miR-514a promotes neuronal development in human iPSC-derived neurons.
IPSC
dendrite
mTOR
miR-514a
microRNA
neuronal development
Journal
Frontiers in cell and developmental biology
ISSN: 2296-634X
Titre abrégé: Front Cell Dev Biol
Pays: Switzerland
ID NLM: 101630250
Informations de publication
Date de publication:
2023
2023
Historique:
received:
12
11
2022
accepted:
26
01
2023
entrez:
24
2
2023
pubmed:
25
2
2023
medline:
25
2
2023
Statut:
epublish
Résumé
Proper development and function of the central nervous system require precise regulation of gene expression. MicroRNAs (miRNAs), a group of small non-coding RNAs that can negatively regulate gene expression at the post-transcriptional level, are critical regulators of neuronal development, and dysregulation of microRNAs has been implicated in various neurological disorders. Changes in microRNA expression and repertoire are related to the emergence of social and behavioral variations in closely related primates, including humans, during evolution. MicroRNA-514a (miR-514a) is an X-linked miRNA that is conserved in species with higher social and cognitive functions, and frequent tandem duplications of miR-514a have been found in primate genomes. Here, we demonstrate that miR-514a plays a crucial role in neuronal development in neurons derived from human induced pluripotent stem cells (iPSCs). Overexpression of miR-514a increased dendritic length, soma size, and activity levels of mammalian target of rapamycin (mTOR) signaling in induced pluripotent stem cell-derived neurons, whereas blocking of endogenous miR-514a inhibited neuronal development. Furthermore, we performed a functional analysis of the miR-514a variation found during primate evolution, to investigate the impact of miR-514a sequence variation and associated changes in expression on brain development during evolution. We found that mutation in miR-514a significantly reduced the expression of the mature form and abolished the effects observed when native miR-514a was expressed. Our findings provide new insights into the functional role of miR-514a in the regulation of neuronal development and evolution of primate brain development.
Identifiants
pubmed: 36824367
doi: 10.3389/fcell.2023.1096463
pii: 1096463
pmc: PMC9941156
doi:
Types de publication
Journal Article
Langues
eng
Pagination
1096463Informations de copyright
Copyright © 2023 Akaba, Takahashi, Suzuki, Kosaki and Tsujimura.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as potential conflicts of interest.
Références
Cell. 2012 Apr 13;149(2):274-93
pubmed: 22500797
Nat Cell Biol. 2009 Jun;11(6):705-16
pubmed: 19465924
Stem Cells. 2013 Mar;31(3):458-66
pubmed: 23193063
Nat Med. 2019 Apr;25(4):583-590
pubmed: 30804514
J Neurol Neurosurg Psychiatry. 1998 Oct;65(4):446-53
pubmed: 9771764
Nat Rev Mol Cell Biol. 2019 Jan;20(1):21-37
pubmed: 30108335
Nat Rev Neurosci. 2008 Mar;9(3):206-21
pubmed: 18270515
Transl Psychiatry. 2018 Jul 19;8(1):129
pubmed: 30022058
Gastroenterol Res Pract. 2014;2014:473817
pubmed: 24982669
Nat Neurosci. 2013 Nov;16(11):1537-43
pubmed: 24165680
Nat Commun. 2014 Dec 19;5:5840
pubmed: 25524633
Annu Rev Neurosci. 1994;17:267-310
pubmed: 8210176
Mol Genet Genomics. 2018 Oct;293(5):1159-1167
pubmed: 29752546
EMBO J. 2009 Mar 18;28(6):697-710
pubmed: 19197241
Development. 2018 Jan 8;145(1):
pubmed: 29311260
Brain Res. 2010 Jun 18;1338:3-13
pubmed: 20380818
Oncotarget. 2015 Jul 10;6(19):17753-63
pubmed: 25980496
Epilepsy Res. 2014 Mar;108(3):433-41
pubmed: 24560344
Cell Death Differ. 2021 Feb;28(2):764-779
pubmed: 32913227
Prog Neurobiol. 2019 Nov;182:101664
pubmed: 31356849
J Biol Chem. 2016 Jun 24;291(26):13891-904
pubmed: 27129236
Dev Biol. 2018 May 15;437(2):120-130
pubmed: 29550364
Nat Rev Neurosci. 2019 Mar;20(3):133-147
pubmed: 30696992
J Child Neurol. 2005 Sep;20(9):747-53
pubmed: 16225830
Trends Neurosci. 2012 May;35(5):325-34
pubmed: 22436491
Front Mol Neurosci. 2016 Aug 17;9:69
pubmed: 27582688
EMBO J. 2014 Apr 16;33(8):906-20
pubmed: 24614228
J Exp Clin Cancer Res. 2021 Mar 25;40(1):112
pubmed: 33766100
Neurobiol Dis. 2015 Dec;84:39-49
pubmed: 25796566
Cereb Cortex. 2000 Oct;10(10):981-91
pubmed: 11007549
Nat Neurosci. 2010 Nov;13(11):1330-7
pubmed: 20975757
Nat Genet. 2005 Jul;37(7):766-70
pubmed: 15965474
Nat Neurosci. 2011 Mar;14(3):285-93
pubmed: 21346746
Cell Mol Life Sci. 2012 Jan;69(1):89-102
pubmed: 21833581
Brain Res. 2021 Oct 1;1768:147576
pubmed: 34216580
Sci Transl Med. 2019 Dec 18;11(523):
pubmed: 31852800
Nat Commun. 2012;3:1145
pubmed: 23093182
Mol Neurobiol. 2006 Dec;34(3):205-19
pubmed: 17308353
Cell. 2018 Mar 22;173(1):20-51
pubmed: 29570994
Neuron. 2014 Oct 22;84(2):275-91
pubmed: 25374355
RNA. 2009 Sep;15(9):1640-51
pubmed: 19617315
Cell Rep. 2015 Sep 22;12(11):1887-901
pubmed: 26344767
Nat Med. 2016 Apr;22(4):345-61
pubmed: 27050589
Genome Res. 2007 May;17(5):612-7
pubmed: 17416744
Eur J Pharmacol. 2021 Apr 5;896:173914
pubmed: 33508286
Nature. 2004 Sep 16;431(7006):350-5
pubmed: 15372042
Cell. 2018 Jul 26;174(3):505-520
pubmed: 30053424
Am J Transl Res. 2017 Dec 15;9(12):5332-5346
pubmed: 29312487
Cell. 2007 Nov 30;131(5):861-72
pubmed: 18035408
PLoS One. 2017 Jun 22;12(6):e0176596
pubmed: 28640911
Trends Neurosci. 2020 Aug;43(8):608-621
pubmed: 32507511
J Neurosci. 2013 Apr 17;33(16):6885-94
pubmed: 23595747
Front Mol Neurosci. 2017 May 30;10:160
pubmed: 28611587
Hum Mol Genet. 2008 Jan 1;17(1):111-8
pubmed: 17940072
Exp Neurol. 2015 Jun;268:46-53
pubmed: 25128264
Cell. 2004 Jan 23;116(2):281-97
pubmed: 14744438
Hum Cell. 2011 Jun;24(2):96-103
pubmed: 21562774
Brain Res. 2010 Jun 18;1338:78-88
pubmed: 20388499
Nat Cell Biol. 2009 Mar;11(3):228-34
pubmed: 19255566