Functional organization of visual responses in the octopus optic lobe.
Journal
bioRxiv : the preprint server for biology
Titre abrégé: bioRxiv
Pays: United States
ID NLM: 101680187
Informations de publication
Date de publication:
16 Feb 2023
16 Feb 2023
Historique:
entrez:
24
2
2023
pubmed:
25
2
2023
medline:
25
2
2023
Statut:
epublish
Résumé
Cephalopods are highly visual animals with camera-type eyes, large brains, and a rich repertoire of visually guided behaviors. However, the cephalopod brain evolved independently from that of other highly visual species, such as vertebrates, and therefore the neural circuits that process sensory information are profoundly different. It is largely unknown how their powerful but unique visual system functions, since there have been no direct neural measurements of visual responses in the cephalopod brain. In this study, we used two-photon calcium imaging to record visually evoked responses in the primary visual processing center of the octopus central brain, the optic lobe, to determine how basic features of the visual scene are represented and organized. We found spatially localized receptive fields for light (ON) and dark (OFF) stimuli, which were retinotopically organized across the optic lobe, demonstrating a hallmark of visual system organization shared across many species. Examination of these responses revealed transformations of the visual representation across the layers of the optic lobe, including the emergence of the OFF pathway and increased size selectivity. We also identified asymmetries in the spatial processing of ON and OFF stimuli, which suggest unique circuit mechanisms for form processing that may have evolved to suit the specific demands of processing an underwater visual scene. This study provides insight into the neural processing and functional organization of the octopus visual system, highlighting both shared and unique aspects, and lays a foundation for future studies of the neural circuits that mediate visual processing and behavior in cephalopods. The functional organization and visual response properties of the cephalopod visual system are largely unknownUsing calcium imaging, we performed mapping of visual responses in the octopus optic lobeVisual responses demonstrate localized ON and OFF receptive fields with retinotopic organizationON/OFF pathways and size selectivity emerge across layers of the optic lobe and have distinct properties relative to other species.
Identifiants
pubmed: 36824726
doi: 10.1101/2023.02.16.528734
pmc: PMC9949128
pii:
doi:
Types de publication
Preprint
Langues
eng
Subventions
Organisme : NINDS NIH HHS
ID : R01 NS118466
Pays : United States
Commentaires et corrections
Type : UpdateIn
Références
Nat Neurosci. 2014 Feb;17(2):296-303
pubmed: 24390225
Elife. 2023 Jan 03;12:
pubmed: 36594460
Nature. 2014 Aug 28;512(7515):427-30
pubmed: 25043016
Cell Tissue Res. 1979;204(3):463-72
pubmed: 93516
Cell Rep. 2019 Jun 4;27(10):2881-2894.e5
pubmed: 31167135
Comp Biochem Physiol A Mol Integr Physiol. 2005 Nov;142(3):340-6
pubmed: 16165381
Vision Res. 1966 Jun;5(5):253-67
pubmed: 5905868
Curr Opin Neurobiol. 2020 Feb;60:47-54
pubmed: 31837480
Annu Rev Anim Biosci. 2020 Feb 15;8:71-90
pubmed: 31815522
Curr Biol. 2014 May 5;24(9):976-83
pubmed: 24704075
Nature. 1960 Jun 11;186:836-9
pubmed: 13846638
Cogn Process. 2008 Dec;9(4):239-47
pubmed: 17932698
Front Physiol. 2016 Dec 12;7:620
pubmed: 28018245
Nature. 2005 Jan 20;433(7023):212
pubmed: 15662403
Neurosignals. 2004 Jan-Apr;13(1-2):87-98
pubmed: 15004427
Curr Biol. 2022 Jan 10;32(1):97-110.e4
pubmed: 34798049
Annu Rev Neurosci. 1992;15:1-29
pubmed: 1575438
Curr Biol. 2022 Nov 7;32(21):4780-4781
pubmed: 36347222
Brain Behav Evol. 2009;74(3):231-45
pubmed: 20029186
Invert Neurosci. 2014 Mar;14(1):13-36
pubmed: 24385049
J Neurosci. 2013 Mar 13;33(11):4642-56
pubmed: 23486939
Exp Neurol. 1965 Jul;12:247-56
pubmed: 14314553
Front Biosci (Schol Ed). 2009 Jun 01;1(1):319-28
pubmed: 19482705
Curr Biol. 2009 Oct 13;19(19):1632-6
pubmed: 19765993
Vision Res. 2013 May 3;83:40-7
pubmed: 23499977
Nat Neurosci. 2016 May;19(5):706-715
pubmed: 26928063
J Comp Psychol. 2003 Jun;117(2):149-55
pubmed: 12856785
Vision Res. 1968 Aug;8(8):1013-21
pubmed: 5683079
J Comp Neurol. 1982 Apr 20;206(4):346-58
pubmed: 7096632
Proc Biol Sci. 2016 Sep 14;283(1838):
pubmed: 27629028
Front Physiol. 2017 Jul 27;8:538
pubmed: 28798695
iScience. 2020 Jan 24;23(1):100816
pubmed: 31972515
Neuron. 2018 Jan 3;97(1):164-180.e7
pubmed: 29249282
Lab Anim. 2015 Jul;49(2 Suppl):1-90
pubmed: 26354955
Front Physiol. 2017 Feb 24;8:105
pubmed: 28286484
Neuron. 2005 Mar 24;45(6):941-51
pubmed: 15797554
Neuron. 2010 Apr 15;66(1):15-36
pubmed: 20399726
Spat Vis. 1997;10(4):433-6
pubmed: 9176952
Curr Biol. 2022 Dec 5;32(23):5031-5044.e4
pubmed: 36318923
Nat Commun. 2022 Nov 30;13(1):7392
pubmed: 36450803
Pflugers Arch. 2006 Dec;453(3):385-96
pubmed: 17047983
J Exp Biol. 1996;199(Pt 9):2077-84
pubmed: 9319987
J Exp Biol. 2021 Jun 1;224(11):
pubmed: 34109984
Neuron. 2010 Sep 9;67(5):858-71
pubmed: 20826316
J Neurosci Methods. 2018 Jan 15;294:67-71
pubmed: 29146192