BA.1, BA.2 and BA.2.75 variants show comparable replication kinetics, reduced impact on epithelial barrier and elicit cross-neutralizing antibodies.


Journal

PLoS pathogens
ISSN: 1553-7374
Titre abrégé: PLoS Pathog
Pays: United States
ID NLM: 101238921

Informations de publication

Date de publication:
02 2023
Historique:
received: 20 08 2022
accepted: 09 02 2023
revised: 08 03 2023
pubmed: 25 2 2023
medline: 11 3 2023
entrez: 24 2 2023
Statut: epublish

Résumé

The Omicron variant of SARS-CoV-2 is capable of infecting unvaccinated, vaccinated and previously-infected individuals due to its ability to evade neutralization by antibodies. With multiple sub-lineages of Omicron emerging in the last 12 months, there is inadequate information on the quantitative antibody response generated upon natural infection with Omicron variant and whether these antibodies offer cross-protection against other sub-lineages of Omicron variant. In this study, we characterized the growth kinetics of Kappa, Delta and Omicron variants of SARS-CoV-2 in Calu-3 cells. Relatively higher amounts infectious virus titers, cytopathic effect and disruption of epithelial barrier functions was observed with Delta variant whereas infection with Omicron sub-lineages led to a more robust induction of interferon pathway, lower level of virus replication and mild effect on epithelial barrier. The replication kinetics of BA.1, BA.2 and BA.2.75 sub-lineages of the Omicron variant were comparable in cell culture and natural infection in a subset of individuals led to a significant increase in binding and neutralizing antibodies to the Delta variant and all the three sub-lineages of Omicron but the level of neutralizing antibodies were lowest against the BA.2.75 variant. Finally, we show that Cu2+, Zn2+ and Fe2+ salts inhibited in vitro RdRp activity but only Cu2+ and Fe2+ inhibited both the Delta and Omicron variants in cell culture. Thus, our results suggest that high levels of interferons induced upon infection with Omicron variant may counter virus replication and spread. Waning neutralizing antibody titers rendered subjects susceptible to infection by Omicron variants and natural Omicron infection elicits neutralizing antibodies that can cross-react with other sub-lineages of Omicron and other variants of concern.

Identifiants

pubmed: 36827451
doi: 10.1371/journal.ppat.1011196
pii: PPATHOGENS-D-22-01452
pmc: PMC9994724
doi:

Substances chimiques

Broadly Neutralizing Antibodies 0
Antibodies, Neutralizing 0
Interferons 9008-11-1
Antibodies, Viral 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e1011196

Informations de copyright

Copyright: © 2023 Singh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Déclaration de conflit d'intérêts

The authors have declared that no conflict of interest exists.

Références

J Biol Chem. 2014 Sep 12;289(37):25783-96
pubmed: 25074927
medRxiv. 2021 Dec 17;:
pubmed: 34909788
Cell Discov. 2018 Mar 27;4:14
pubmed: 29619244
Science. 2020 Aug 7;369(6504):712-717
pubmed: 32527928
Cell Host Microbe. 2022 Nov 9;30(11):1527-1539.e5
pubmed: 36270286
J Virol Methods. 2021 Feb;288:114013
pubmed: 33166547
Nat Commun. 2022 Jul 28;13(1):4375
pubmed: 35902613
Cell Host Microbe. 2022 Mar 9;30(3):373-387.e7
pubmed: 35150638
Life Sci Alliance. 2021 Mar 16;4(5):
pubmed: 33727249
Nature. 2021 Nov;599(7883):114-119
pubmed: 34488225
Euro Surveill. 2021 Jun;26(24):
pubmed: 34142653
PLoS Pathog. 2022 Feb 10;18(2):e1009914
pubmed: 35143587
Nat Commun. 2021 Jun 2;12(1):3287
pubmed: 34078893
Med Hypotheses. 2020 Sep;142:109814
pubmed: 32388476
Nat Microbiol. 2022 Feb;7(2):213-223
pubmed: 35017676
Nat Commun. 2022 Nov 19;13(1):7120
pubmed: 36402756
Lancet Infect Dis. 2022 Jun;22(6):766-767
pubmed: 35427493
Front Mol Biosci. 2020 Dec 23;7:586254
pubmed: 33425988
J Med Virol. 2022 Oct;94(10):4780-4791
pubmed: 35680610
Nat Commun. 2022 Jan 24;13(1):460
pubmed: 35075154
Nature. 2020 Aug;584(7819):154-156
pubmed: 32438371
J Infect Dis. 2023 May 12;227(10):1143-1152
pubmed: 35776136
BMJ. 2022 Feb 11;376:o358
pubmed: 35149516
Sci Immunol. 2022 Mar 25;7(69):eabo2202
pubmed: 35113647
mBio. 2022 Jun 28;13(3):e0068322
pubmed: 35420469
Appl Environ Microbiol. 1993 Dec;59(12):4374-6
pubmed: 8285724
Nature. 2022 Apr;604(7906):553-556
pubmed: 35240676
J Virol. 2020 Sep 15;94(19):
pubmed: 32699094
PLoS One. 2020 Dec 17;15(12):e0243412
pubmed: 33332472
Sci Immunol. 2022 Sep 16;7(75):eabq2427
pubmed: 35653438
PLoS Negl Trop Dis. 2019 Nov 18;13(11):e0007894
pubmed: 31738758
Emerg Microbes Infect. 2022 Dec;11(1):277-283
pubmed: 34951565
PLoS Pathog. 2010 Nov 04;6(11):e1001176
pubmed: 21079686
Rev Med Virol. 2023 Jan;33(1):e2391
pubmed: 36017597
Lancet. 2022 Jan 15;399(10321):234-236
pubmed: 34942101
J Clin Virol. 2022 Jan;146:105060
pubmed: 34971849
Science. 2020 Aug 7;369(6504):706-712
pubmed: 32527925
ArXiv. 2022 Feb 10;:
pubmed: 35169598
Nat Commun. 2023 Mar 23;14(1):1620
pubmed: 36959194
Science. 2021 Jul 9;373(6551):236-241
pubmed: 34083449
EBioMedicine. 2022 Apr;78:103938
pubmed: 35305396
Lancet Microbe. 2021 May;2(5):e210-e218
pubmed: 33969329
Cell Host Microbe. 2022 Nov 9;30(11):1540-1555.e15
pubmed: 36272413
Cell. 2021 Apr 15;184(8):2201-2211.e7
pubmed: 33743891
Cell Rep. 2022 May 17;39(7):110829
pubmed: 35550680
Lancet Reg Health Eur. 2022 Oct;21:100462
pubmed: 35915784
Science. 2021 Feb 5;371(6529):
pubmed: 33408181
N Engl J Med. 2022 Apr 21;386(16):1579-1580
pubmed: 35294809
Nat Commun. 2022 Jun 15;13(1):3451
pubmed: 35705548
Nat Commun. 2020 Aug 6;11(1):3910
pubmed: 32764693
Nature. 2022 Mar;603(7902):700-705
pubmed: 35104835
Nature. 2022 Feb;602(7896):300-306
pubmed: 34823256
Biomed Pharmacother. 2021 Apr;136:111228
pubmed: 33454595
N Engl J Med. 2021 Aug 12;385(7):585-594
pubmed: 34289274
Cell Discov. 2022 May 10;8(1):42
pubmed: 35538050
Lancet. 2022 Jan 29;399(10323):412-413
pubmed: 35065007
Nature. 2022 Mar;603(7902):687-692
pubmed: 35062015
Science. 2022 Jun 17;376(6599):1327-1332
pubmed: 35608456
Front Med (Lausanne). 2022 Nov 02;9:955930
pubmed: 36405589
Nature. 2022 Mar;603(7902):715-720
pubmed: 35104836
J Travel Med. 2021 Oct 11;28(7):
pubmed: 34369565
Sci Immunol. 2022 Jul 29;7(73):eabq3511
pubmed: 35549299
Nature. 2022 Feb;602(7896):307-313
pubmed: 34937050
Biol Trace Elem Res. 2022 Nov;200(11):4571-4581
pubmed: 34825316
Nat Med. 2022 Mar;28(3):472-476
pubmed: 35042228
Biometals. 2021 Dec;34(6):1217-1235
pubmed: 34398357
Science. 2021 Nov 19;374(6570):995-999
pubmed: 34648303
Med. 2022 Apr 8;3(4):262-268.e4
pubmed: 35313451
FEMS Immunol Med Microbiol. 2005 Feb 1;43(2):105-14
pubmed: 15681139
ACS Pharmacol Transl Sci. 2021 Mar 26;4(2):898-907
pubmed: 33855277
Cell Res. 2022 Mar;32(3):319-321
pubmed: 35064226

Auteurs

Janmejay Singh (J)

Bioassay Laboratory and Clinical and Cellular Virology Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India.

Anbalagan Anantharaj (A)

Bioassay Laboratory and Clinical and Cellular Virology Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India.

Aleksha Panwar (A)

Bioassay Laboratory and Clinical and Cellular Virology Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India.

Chitra Rani (C)

Bioassay Laboratory and Clinical and Cellular Virology Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India.

Monika Bhardwaj (M)

Bioassay Laboratory and Clinical and Cellular Virology Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India.

Parveen Kumar (P)

Bioassay Laboratory and Clinical and Cellular Virology Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India.

Partha Chattopadhyay (P)

INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi, India.
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.

Priti Devi (P)

INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi, India.
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.

Ranjeet Maurya (R)

INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi, India.
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.

Pallavi Mishra (P)

INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi, India.

Anil Kumar Pandey (AK)

Employees State Insurance Corporation Medical College and Hospital, Faridabad, Haryana, India.

Rajesh Pandey (R)

INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi, India.

Guruprasad R Medigeshi (GR)

Bioassay Laboratory and Clinical and Cellular Virology Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH