Hypochlorous Acid and Chloramines Induce Specific Fragmentation and Cross-Linking of the G1-IGD-G2 Domains of Recombinant Human Aggrecan, and Inhibit ADAMTS1 Activity.
ADAMTS
MPO-H2O2-Cl− system
aggrecan
chloramines
extracellular matrix
hypochlorous acid
myeloperoxidase
protein oxidation
Journal
Antioxidants (Basel, Switzerland)
ISSN: 2076-3921
Titre abrégé: Antioxidants (Basel)
Pays: Switzerland
ID NLM: 101668981
Informations de publication
Date de publication:
08 Feb 2023
08 Feb 2023
Historique:
received:
02
01
2023
revised:
03
02
2023
accepted:
06
02
2023
entrez:
25
2
2023
pubmed:
26
2
2023
medline:
26
2
2023
Statut:
epublish
Résumé
Atherosclerosis is a chronic inflammatory disease and a leading cause of mortality. It is characterized by arterial wall plaques that contain high levels of cholesterol and other lipids and activated leukocytes covered by a fibrous cap of extracellular matrix (ECM). The ECM undergoes remodelling during atherogenesis, with increased expression of aggrecan, a proteoglycan that binds low-density-lipoproteins (LDL). Aggrecan levels are regulated by proteases, including a disintegrin and metalloproteinase with thrombospondin motifs 1 (ADAMTS1). Activated leukocytes release myeloperoxidase (MPO) extracellularly, where it binds to proteins and proteoglycans. Aggrecan may therefore mediate colocalization of MPO and LDL. MPO generates hypochlorous acid (HOCl) and chloramines (RNHCl species, from reaction of HOCl with amines on amino acids and proteins) that damage LDL and proteins, but effects on aggrecan have not been examined. The present study demonstrates that HOCl cleaves truncated (G1-IGD-G2) recombinant human aggrecan at specific sites within the IGD domain, with these being different from those induced by ADAMTS1 which also cleaves within this region. Irreversible protein cross-links are also formed dose-dependently. These effects are limited by the HOCl scavenger methionine. Chloramines including those formed on amino acids, proteins, and ECM materials induce similar damage. HOCl and taurine chloramines inactivate ADAMTS1 consistent with a switch from proteolytic to oxidative aggrecan fragmentation. Evidence is also presented for colocalization of aggrecan and HOCl-generated epitopes in advanced human atherosclerotic plaques. Overall, these data show that HOCl and chloramines can induce specific modifications on aggrecan, and that these effects are distinct from those of ADAMTS1.
Identifiants
pubmed: 36829979
pii: antiox12020420
doi: 10.3390/antiox12020420
pmc: PMC9952545
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : Novo Nordisk Foundation
ID : NNF13OC0004294
Organisme : Novo Nordisk Foundation
ID : NNF20SA0064214
Organisme : China Scholarship Council
ID : 201909110076
Déclaration de conflit d'intérêts
Prof. Davies declares consultancy contracts with Novo Nordisk A/S, and is a founder and shareholder in Seleno Therapeutics plc. These funders had no role in the design of the study; in the collection, analyses or interpretation of data, in the writing of the manuscript, or in the decision to publish the results. All other authors declare no conflict of interest.
Références
Arch Biochem Biophys. 2018 Feb 15;640:47-52
pubmed: 29336940
Biochem Biophys Res Commun. 2002 Apr 26;293(1):501-8
pubmed: 12054629
Sci Rep. 2018 Jun 4;8(1):8550
pubmed: 29867203
Fundam Clin Pharmacol. 2005 Dec;19(6):661-7
pubmed: 16313278
Arterioscler Thromb Vasc Biol. 2019 Oct;39(10):2067-2081
pubmed: 31366218
J Biol Chem. 2002 Aug 30;277(35):32172-9
pubmed: 12070141
FEBS Lett. 2000 Aug 4;478(3):241-5
pubmed: 10930576
Biochem J. 1998 Jun 15;332 ( Pt 3):617-25
pubmed: 9620862
Clin Sci (Lond). 2018 Jun 21;132(12):1243-1252
pubmed: 29930142
J Clin Invest. 1997 May 1;99(9):2075-81
pubmed: 9151778
Biochem J. 1994 Aug 15;302 ( Pt 1):297-304
pubmed: 8068018
Free Radic Biol Med. 2019 May 20;136:118-134
pubmed: 30959171
Arch Biochem Biophys. 1959 May;82(1):70-7
pubmed: 13650640
Matrix Biol. 2014 Apr;35:34-41
pubmed: 24444773
JCI Insight. 2018 Mar 8;3(5):
pubmed: 29515038
J Biol Chem. 1992 Sep 25;267(27):19470-4
pubmed: 1326552
Clin Lipidol. 2010 Dec 1;5(6):835-852
pubmed: 21339854
Lab Invest. 2001 Apr;81(4):543-54
pubmed: 11304574
Cells. 2022 Mar 29;11(7):
pubmed: 35406715
Biochim Biophys Acta. 2006 Apr;1761(4):392-415
pubmed: 16698314
Free Radic Biol Med. 2001 Nov 15;31(10):1254-62
pubmed: 11705704
Arterioscler Thromb Vasc Biol. 1995 May;15(5):551-61
pubmed: 7749869
Clin Chem. 2011 Dec;57(12):1762-70
pubmed: 21940659
Clin Chem. 2011 Jan;57(1):33-9
pubmed: 21059827
Biochemistry. 2002 Jan 29;41(4):1293-301
pubmed: 11802729
Arterioscler Thromb Vasc Biol. 2014 Apr;34(4):779-89
pubmed: 24407029
Free Radic Biol Med. 1991;10(2):101-9
pubmed: 1849864
Biochem J. 1999 Jun 1;340 ( Pt 2):539-48
pubmed: 10333500
Biochem J. 2005 Feb 15;386(Pt 1):15-27
pubmed: 15554875
Proc Natl Acad Sci U S A. 1986 Jun;83(12):4322-6
pubmed: 3012563
J Biol Chem. 2001 Sep 7;276(36):33393-401
pubmed: 11445563
Protein Sci. 2008 Jan;17(1):16-21
pubmed: 18042673
Science. 1983 Nov 11;222(4624):625-8
pubmed: 6635660
Pharmacol Ther. 2022 Aug;236:108052
pubmed: 34890688
Nature. 2002 Jun 13;417(6890):750-4
pubmed: 12066187
Antioxidants (Basel). 2022 Apr 30;11(5):
pubmed: 35624754
Front Mol Biosci. 2021 Jun 29;8:701959
pubmed: 34268335
Nat Med. 2014 Feb;20(2):193-203
pubmed: 24464187
J Histochem Cytochem. 2020 Nov;68(11):777-795
pubmed: 32870742
Exp Cell Res. 2014 Apr 15;323(1):198-208
pubmed: 24447384
Nature. 2021 Aug;596(7873):583-589
pubmed: 34265844
Biochem J. 2003 Oct 1;375(Pt 1):33-40
pubmed: 12852783
J Biol Chem. 2012 Feb 24;287(9):6375-86
pubmed: 22219194
J Leukoc Biol. 2013 Feb;93(2):185-98
pubmed: 23066164
Free Radic Biol Med. 2001 Mar 1;30(5):572-9
pubmed: 11182528
PLoS One. 2014 Mar 03;9(3):e89621
pubmed: 24595230
Biochemistry (Mosc). 2019 Jun;84(6):652-662
pubmed: 31238865
Biochemistry. 2005 May 17;44(19):7378-87
pubmed: 15882077
J Clin Invest. 1996 Mar 15;97(6):1535-44
pubmed: 8617887
J Intern Med. 2015 Nov;278(5):483-93
pubmed: 26260307
Free Radic Biol Med. 2014 Aug;73:60-6
pubmed: 24794410
Curr Med Chem. 2006;13(27):3271-90
pubmed: 17168851
Amino Acids. 2003 Dec;25(3-4):259-74
pubmed: 14661089
Arterioscler Thromb Vasc Biol. 1995 Sep;15(9):1512-31
pubmed: 7670967
Arch Biochem Biophys. 1992 Feb 1;292(2):555-62
pubmed: 1309976
BMB Rep. 2019 Feb;52(2):145-150
pubmed: 30638179
J Biol Chem. 2006 Feb 10;281(6):3096-104
pubmed: 16326702
Sci Rep. 2016 Dec 12;6:38572
pubmed: 27941824
Chem Res Toxicol. 2001 Oct;14(10):1453-64
pubmed: 11599938
Atherosclerosis. 2014 Feb;232(2):377-83
pubmed: 24468151
Arterioscler Thromb Vasc Biol. 1995 Jul;15(7):982-9
pubmed: 7541296
J Biol Chem. 2006 Dec 29;281(52):39860-9
pubmed: 17074761
J Clin Invest. 1994 Jul;94(1):437-44
pubmed: 8040285
Antioxid Redox Signal. 2020 May 1;32(13):957-981
pubmed: 31989833
Science. 1985 Feb 15;227(4688):747-9
pubmed: 2982211
Am J Physiol Cell Physiol. 2022 May 1;322(5):C967-C976
pubmed: 35385326
Arterioscler Thromb Vasc Biol. 2018 Jul;38(7):1537-1548
pubmed: 29622560
Free Radic Biol Med. 2022 Aug 1;188:162-174
pubmed: 35718304
Matrix Biol. 2010 Jan;29(1):63-73
pubmed: 19788922
Curr Opin Lipidol. 2001 Oct;12(5):477-87
pubmed: 11561166
Free Radic Biol Med. 2021 Aug 20;172:633-651
pubmed: 34246778
Cell Res. 2002 Mar;12(1):19-32
pubmed: 11942407
Arterioscler Thromb Vasc Biol. 2018 Aug;38(8):1859-1867
pubmed: 29903730
J Biol Chem. 2001 Nov 2;276(44):41279-87
pubmed: 11533038
Arch Biochem Biophys. 1996 Aug 1;332(1):110-20
pubmed: 8806715
Redox Biol. 2019 Jan;20:496-513
pubmed: 30476874
Free Radic Biol Med. 2018 Feb 1;115:219-231
pubmed: 29191462
Histol Histopathol. 2004 Apr;19(2):337-47
pubmed: 15024695
Ann Vasc Surg. 2018 Nov;53:224-233
pubmed: 30012457
Redox Biol. 2019 Jun;24:101202
pubmed: 31015146
Antioxid Redox Signal. 2013 Feb 20;18(6):692-713
pubmed: 22823200
Antioxidants (Basel). 2022 Aug 20;11(8):
pubmed: 36009335