A longitudinal survey in the wild reveals major shifts in fish host microbiota after parasite infection.

bacteria community coinfection host-parasite interaction individual survey metabarcoding

Journal

Molecular ecology
ISSN: 1365-294X
Titre abrégé: Mol Ecol
Pays: England
ID NLM: 9214478

Informations de publication

Date de publication:
06 2023
Historique:
revised: 26 01 2023
received: 17 10 2022
accepted: 22 02 2023
medline: 23 5 2023
pubmed: 26 2 2023
entrez: 25 2 2023
Statut: ppublish

Résumé

Recent studies have highlighted associations between diseases and host microbiota. It remains extremely challenging - especially under natural conditions - to clarify whether host microbiota promote future infections, or whether changes in host microbiota result from infections. Nonetheless, deciphering between these two processes is essential for highlighting the role of microbes in disease progression. We longitudinally surveyed, in the wild, the microbiota of individual fish hosts (Leuciscus burdigalensis) both before and after infection by a crustacean ectoparasite (Tracheliastes polycolpus). We found a striking association between parasite infection and the host microbiota composition restricted to the fins the parasite anchored. We clearly demonstrated that infections by the parasite induced a shift in (and did not result from) the host fin microbiota. Furthermore during infection, the microbiota of infected fins got similar to the microbiota of the adult stage, and the free-living infective stage of the parasite with a predominance of the Burkholderiaceae bacteria family. This suggests that some Burkholderiaceae bacteria are involved in a coinfection process and possibly facilitate T. polycolpus infection. In this study, we reveal novel mechanistic insights for understanding the role of the microbiota in host-parasite interactions, which has implications for predicting the progression of diseases in natural host populations.

Identifiants

pubmed: 36840427
doi: 10.1111/mec.16901
doi:

Banques de données

figshare
['10.6084/m9.figshare.20073005']

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

3014-3024

Informations de copyright

© 2023 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.

Références

Afrin, T., Murase, K., Kounosu, A., Hunt, V. L., Bligh, M., Maeda, Y., Hino, A., Maruyama, H., Tsai, I. J., & Kikuchi, T. (2019). Sequential changes in the host gut microbiota during infection with the intestinal parasitic nematode Strongyloides venezuelensis. Frontiers in Cellular and Infection Microbiology, 9, 217. https://doi.org/10.3389/fcimb.2019.00217
Aivelo, T., & Norberg, A. (2018). Parasite-microbiota interactions potentially affect intestinal communities in wild mammals. Journal of Animal Ecology, 87(2), 438-447. https://doi.org/10.1111/1365-2656.12708
Andre, A. v. S. (2002). The role of endosymbiotic wolbachia bacteria in the pathogenesis of river blindness. Science, 295(5561), 1892-1895. https://doi.org/10.1126/science.1068732
Arbiz Martinez, P. (2020). PairwiseAdonis: Pairwise multilevel comparison using Adonis. R Package (0.4).
Archer, E. (2019). Package ‘rfPermute’.
Bär, A.-K., Phukan, N., Pinheiro, J., & Simoes-Barbosa, A. (2015). The interplay of host microbiota and parasitic protozoans at mucosal interfaces: Implications for the outcomes of infections and diseases. PLoS Neglected Tropical Diseases, 9(12), e0004176. https://doi.org/10.1371/journal.pntd.0004176
Baselga, A. (2013). Separating the two components of abundance-based dissimilarity: Balanced changes in abundance vs. abundance gradients. Methods in Ecology and Evolution, 4(6), 552-557. https://doi.org/10.1111/2041-210X.12029
Beatty, J. K., Akierman, S. V., Motta, J.-P., Muise, S., Workentine, M. L., Harrison, J. J., Bhargava, A., Beck, P. L., Rioux, K. P., McKnight, G. W., Wallace, J. L., & Buret, A. G. (2017). Giardia duodenalis induces pathogenic dysbiosis of human intestinal microbiota biofilms. International Journal for Parasitology, 47(6), 311-326. https://doi.org/10.1016/j.ijpara.2016.11.010
Bestion, E., Jacob, S., Zinger, L., Di Gesu, L., Richard, M., White, J., & Cote, J. (2017). Climate warming reduces gut microbiota diversity in a vertebrate ectotherm. Nature Ecology & Evolution, 1(6), 161. https://doi.org/10.1038/s41559-017-0161
Blanchet, S., Rey, O., Berthier, P., Lek, S., & Loot, G. (2009). Evidence of parasite-mediated disruptive selection on genetic diversity in a wild fish population. Molecular Ecology, 18(6), 1112-1123. https://doi.org/10.1111/j.1365-294X.2009.04099.x
Blanchet, S., Thomas, F., & Loot, G. (2009). Reciprocal effects between host phenotype and pathogens: New insights from an old problem. Trends in Parasitology, 25(8), 364-369. https://doi.org/10.1016/j.pt.2009.05.005
Boissière, A., Tchioffo, M. T., Bachar, D., Abate, L., Marie, A., Nsango, S. E., Shahbazkia, H. R., Awono-Ambene, P. H., Levashina, E. A., Christen, R., & Morlais, I. (2012). Midgut microbiota of the malaria mosquito vector Anopheles gambiae and interactions with plasmodium falciparum infection. PLoS Pathogens, 8(5), e1002742. https://doi.org/10.1371/journal.ppat.1002742
Bordenstein, S. R., & Theis, K. R. (2015). Host biology in light of the microbiome: Ten principles of holobionts and hologenomes. PLoS Biology, 23, e1002226.
Boyer, F., Mercier, C., Bonin, A., Le Bras, Y., Taberlet, P., & Coissac, E. (2016). obitools: A unix inspired software package for DNA metabarcoding. Molecular Ecology Resources, 16(1), 176-182. https://doi.org/10.1111/1755-0998.12428
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.
Britton, R. A., & Young, V. B. (2014). Role of the intestinal microbiota in resistance to colonization by Clostridium difficile. Gastroenterology, 146(6), 1547-1553. https://doi.org/10.1053/j.gastro.2014.01.059
Buffie, C. G., & Pamer, E. G. (2013). Microbiota-mediated colonization resistance against intestinal pathogens. Nature Reviews Immunology, 13(11), 790-801. https://doi.org/10.1038/nri3535
Chavez, I. N., Brown, T. M., Assié, A., Bryant, A. S., Samuel, B. S., & Hallem, E. A. (2021). Skin-penetrating nematodes exhibit life-stage-specific interactions with host-associated and environmental bacteria. BMC Biology, 19(1), 221. https://doi.org/10.1186/s12915-021-01153-7
De Cáceres, M., Coll, L., Legendre, P., Allen, R. B., Wiser, S. K., Fortin, M., Condit, R., & Hubbell, S. (2019). Trajectory analysis in community ecology. Ecological Monographs, 89(2), e01350. https://doi.org/10.1002/ecm.1350
De Cáceres, M. (2010). Package ‘vegclust’.
Dheilly, N. M. (2014). Holobiont-holobiont interactions: Redefining host-parasite interactions. PLoS Pathogens, 10(7), e1004093. https://doi.org/10.1371/journal.ppat.1004093
Dheilly, N. M., Poulin, R., & Thomas, F. (2015). Biological warfare: Microorganisms as drivers of host-parasite interactions. Infection, Genetics and Evolution, 34, 251-259. https://doi.org/10.1016/j.meegid.2015.05.027
Escudié, F., Auer, L., Bernard, M., Cauquil, L., Vidal, K., Mariadassou, M., Hernandez-Raquet, G., & Pascal, G. (2017). FROGS: Find rapidly OTU with galaxy solution. Bioinformatics, 34(8), 1287-1294.
Fliegerova, K., Tapio, I., Bonin, A., Mrazek, J., Callegari, M. L., Bani, P., Bayat, A., Vilkki, J., Kopečný, J., Shingfield, K. J., Boyer, F., Coissac, E., Taberlet, P., & Wallace, R. J. (2014). Effect of DNA extraction and sample preservation method on rumen bacterial population. Anaerobe, 29, 80-84. https://doi.org/10.1016/j.anaerobe.2013.09.015
Flórez, L. V., Scherlach, K., Gaube, P., Ross, C., Sitte, E., Hermes, C., Rodrigues, A., Hertweck, C., & Kaltenpoth, M. (2017). Antibiotic-producing symbionts dynamically transition between plant pathogenicity and insect-defensive mutualism. Nature Communications, 8(1), 15172. https://doi.org/10.1038/ncomms15172
Gaulke, C. A., Martins, M. L., Watral, V. G., Humphreys, I. R., Spagnoli, S. T., Kent, M. L., & Sharpton, T. J. (2019). A longitudinal assessment of host-microbe-parasite interactions resolves the zebrafish gut microbiome's link to Pseudocapillaria tomentosa infection and pathology. Microbiome, 7(1), 10. https://doi.org/10.1186/s40168-019-0622-9
Hayes, K. S., Bancroft, A. J., Goldrick, M., Portsmouth, C., Roberts, I. S., & Grencis, R. K. (2010). Exploitation of the intestinal microflora by the parasitic nematode Trichuris muris. Science, 328(5984), 1391-1394. https://doi.org/10.1126/science.1187703
Hervé, M. (2019). Package ‘RVAideMemoire.’.
Jenkins, T. P., Peachey, L. E., Ajami, N. J., MacDonald, A. S., Hsieh, M. H., Brindley, P. J., Cantacessi, C., & Rinaldi, G. (2018). Schistosoma mansoni infection is associated with quantitative and qualitative modifications of the mammalian intestinal microbiota. Scientific Reports, 8(1), 12072. https://doi.org/10.1038/s41598-018-30412-x
Jombart, T. (2008). Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics, 24(11), 1403-1405. https://doi.org/10.1093/bioinformatics/btn129
Lee, S. C., Tang, M. S., Lim, Y. A. L., Choy, S. H., Kurtz, Z. D., Cox, L. M., Gundra, U. M., Cho, I., Bonneau, R., Blaser, M. J., Chua, K. H., & Loke, P. (2014). Helminth colonization is associated with increased diversity of the gut microbiota. PLoS Neglected Tropical Diseases, 8(5), e2880. https://doi.org/10.1371/journal.pntd.0002880
Lochmiller, R. L., & Deerenberg, C. (2000). Trade-offs in evolutionary immunology: Just what is the cost of immunity? Oikos, 88(1), 87-98. https://doi.org/10.1034/j.1600-0706.2000.880110.x
Loot, G., Poulet, N., Reyjol, Y., Blanchet, S., & Lek, S. (2004). The effects of the ectoparasite Tracheliastes polycolpus (Copepoda: Lernaeopodidae) on the fins of rostrum dace (Leuciscus leuciscus burdigalensis). Parasitology Research, 94(1), 16-23. https://doi.org/10.1007/s00436-004-1166-9
Lootvoet, A., Blanchet, S., Gevrey, M., Buisson, L., Tudesque, L., & Loot, G. (2013). Patterns and processes of alternative host use in a generalist parasite: Insights from a natural host-parasite interaction. Functional Ecology, 27(6), 1403-1414. https://doi.org/10.1111/1365-2435.12140
Lutz, H. L., Gilbert, J. A., & Dick, C. W. (2022). Associations between Afrotropical bats, eukaryotic parasites, and microbial symbionts. Molecular Ecology, 31(7), 1939-1950. https://doi.org/10.1111/mec.16044
Mahé, F., Rognes, T., Quince, C., de Vargas, C., & Dunthorn, M. (2014). Swarm: Robust and fast clustering method for amplicon-based studies. PeerJ, 2, e593. https://doi.org/10.7717/peerj.593
Mathieu-Bégné, E., Blanchet, S., Rey, O., Scelsi, O., Poesy, C., Marselli, G., & Loot, G. (2021). A fine-scale analysis reveals microgeographic hotspots maximizing infection rate between a parasite and its fish host. Functional Ecology, 36, 380-391. https://doi.org/10.1111/1365-2435.13967
Mathieu-Bégné, E., Blanchet, S., Rey, O., Toulza, E., Veyssiere, C., Manzi, S., Lefort, M., Scelsi, O., & Loot, G. (2023). Resources for "a longitudinal survey in the wild reveals major shifts in fish host microbiota after parasite infection". Figshare. Dataset. https://doi.org/10.6084/m9.figshare.20073005
Mazé-Guilmo, E. (2016). Etude du potentiel de colonisation des parasites: Une approche intégrative. Université Paul Sabatier.
McMurdie, P. J., & Holmes, S. (2013). Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One, 8(4), e61217.
Mooney, J. P., Lokken, K. L., Byndloss, M. X., George, M. D., Velazquez, E. M., Faber, F., Butler, B. P., Walker, G. T., Ali, M. M., Potts, R., Tiffany, C., Ahmer, B. M. M., Luckhart, S., & Tsolis, R. M. (2015). Inflammation-associated alterations to the intestinal microbiota reduce colonization resistance against non-typhoidal Salmonella during concurrent malaria parasite infection. Scientific Reports, 5(1), 14603. https://doi.org/10.1038/srep14603
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., O'hara, R., Simpson, G. L., Solymos, P., Stevens, M. H. H., & Wagner, H. (2011). Vegan: Community ecology package. R Package Version 1.17-2. Available at: http://CRAN.R-project.org/package=vegan
Portet, A., Toulza, E., Lokmer, A., Huot, C., Duval, D., Galinier, R., & Gourbal, B. (2019). Infection of the Biomphalaria glabrata vector snail by Schistosoma mansoni parasites drives snail microbiota dysbiosis. BioRxiv. https://doi.org/10.1101/386623
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glöckner, F. O. (2012). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41(D1), D590-D596. https://doi.org/10.1093/nar/gks1219
Rey, O., Fourtune, L., Paz-Vinas, I., Loot, G., Veyssière, C., Roche, B., & Blanchet, S. (2015). Elucidating the spatio-temporal dynamics of an emerging wildlife pathogen using approximate Bayesian computation. Molecular Ecology, 24(21), 5348-5363. https://doi.org/10.1111/mec.13401
Reynolds, L. A., Finlay, B. B., & Maizels, R. M. (2015). Cohabitation in the intestine: Interactions among helminth parasites, bacterial microbiota, and host immunity. The Journal of Immunology, 195(9), 4059-4066. https://doi.org/10.4049/jimmunol.1501432
Roguet, A., Eren, A. M., Newton, R. J., & McLellan, S. L. (2018). Fecal source identification using random forest. Microbiome, 6(1), 185. https://doi.org/10.1186/s40168-018-0568-3
Sandland, G. J., & Minchella, D. J. (2003). Costs of immune defense: An enigma wrapped in an environmental cloak? Trends in Parasitology, 19(12), 571-574. https://doi.org/10.1016/j.pt.2003.10.006
Speer, K. A. (2022). Microbiomes mediate host−parasite interactions. Molecular Ecology, 31, 1925-1927. https://doi.org/10.1111/mec.16381
Stensvold, C. R., & van der Giezen, M. (2018). Associations between gut microbiota and common luminal intestinal parasites. Trends in Parasitology, 34(5), 369-377. https://doi.org/10.1016/j.pt.2018.02.004
Swe, P. M., Reynolds, S. L., & Fischer, K. (2014). Parasitic scabies mites and associated bacteria joining forces against host complement defence. Parasite Immunology, 36(11), 585-593. https://doi.org/10.1111/pim.12133
White, E. C., Houlden, A., Bancroft, A. J., Hayes, K. S., Goldrick, M., Grencis, R. K., & Roberts, I. S. (2018). Manipulation of host and parasite microbiotas: Survival strategies during chronic nematode infection. Science Advances, 4(3), eaap7399. https://doi.org/10.1126/sciadv.aap7399
Wolinska, J., & King, K. C. (2009). Environment can alter selection in host-parasite interactions. Trends in Parasitology, 25(5), 236-244. https://doi.org/10.1016/j.pt.2009.02.004

Auteurs

Eglantine Mathieu-Bégné (E)

Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland.

Simon Blanchet (S)

Laboratoire Evolution et Diversité Biologique (UMR5174), Centre National Pour la Recherche Scientifique, Ecole Nationale de Formation Agronomique, Université Paul Sabatier, Toulouse, France.
Station d'Ecologie Théorique et Expérimentale (UAR2029), Centre National Pour la Recherche Scientifique, Moulis, France.

Olivier Rey (O)

IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France.

Eve Toulza (E)

IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France.

Charlotte Veyssière (C)

Laboratoire Evolution et Diversité Biologique (UMR5174), Centre National Pour la Recherche Scientifique, Ecole Nationale de Formation Agronomique, Université Paul Sabatier, Toulouse, France.

Sophie Manzi (S)

Laboratoire Evolution et Diversité Biologique (UMR5174), Centre National Pour la Recherche Scientifique, Ecole Nationale de Formation Agronomique, Université Paul Sabatier, Toulouse, France.

Maxim Lefort (M)

Station d'Ecologie Théorique et Expérimentale (UAR2029), Centre National Pour la Recherche Scientifique, Moulis, France.

Orlane Scelsi (O)

Station d'Ecologie Théorique et Expérimentale (UAR2029), Centre National Pour la Recherche Scientifique, Moulis, France.

Géraldine Loot (G)

Laboratoire Evolution et Diversité Biologique (UMR5174), Centre National Pour la Recherche Scientifique, Ecole Nationale de Formation Agronomique, Université Paul Sabatier, Toulouse, France.
Institut Universitaire de France, Paris, France.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH