Using UncertainSCI to Quantify Uncertainty in Cardiac Simulations.
Journal
Computing in cardiology
ISSN: 2325-8861
Titre abrégé: Comput Cardiol (2010)
Pays: United States
ID NLM: 101562329
Informations de publication
Date de publication:
Sep 2020
Sep 2020
Historique:
entrez:
27
2
2023
pubmed:
1
9
2020
medline:
1
9
2020
Statut:
ppublish
Résumé
Cardiac simulations have become increasingly accurate at representing physiological processes. However, simulations often fail to capture the impact of parameter uncertainty in predictions. Uncertainty quantification (UQ) is a set of techniques that captures variability in simulation output based on model assumptions. Although many UQ methods exist, practical implementation can be challenging. We created UncertainSCI, a UQ framework that uses polynomial chaos (PC) expansion to model the forward stochastic error in simulations parameterized with random variables. UncertainSCI uses non-intrusive methods that parsimoniously explores parameter space. The result is an efficient, stable, and accurate PC emulator that can be analyzed to compute output statistics. We created a Python API to run UncertainSCI, minimizing user inputs needed to guide the UQ process. We have implemented UncertainSCI to: (1) quantify the sensitivity of computed torso potentials using the boundary element method to uncertainty in the heart position, and (2) quantify the sensitivity of computed torso potentials using the finite element method to uncertainty in the conductivities of biological tissues. With UncertainSCI, it is possible to evaluate the robustness of simulations to parameter uncertainty and establish realistic expectations on the accuracy of the model results and the clinical guidance they can provide.
Identifiants
pubmed: 36845870
doi: 10.22489/cinc.2020.275
pmc: PMC9956381
mid: NIHMS1836950
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : NIGMS NIH HHS
ID : P41 GM103545
Pays : United States
Organisme : NIGMS NIH HHS
ID : R24 GM136986
Pays : United States
Organisme : NIBIB NIH HHS
ID : U24 EB029012
Pays : United States
Références
Ann Biomed Eng. 2011 Dec;39(12):2900-10
pubmed: 21909818
Philos Trans A Math Phys Eng Sci. 2020 Jun 12;378(2173):20190335
pubmed: 32448070
Front Physiol. 2018 Dec 03;9:1727
pubmed: 30559678
Philos Trans A Math Phys Eng Sci. 2020 Jun 12;378(2173):20200119
pubmed: 32448073
J Electrocardiol. 1997 Oct;30(4):285-91
pubmed: 9375904
IEEE Trans Biomed Eng. 2008 Jan;55(1):31-40
pubmed: 18232344
Phys Med Biol. 1996 Nov;41(11):2231-49
pubmed: 8938024
Front Neuroinform. 2018 Aug 14;12:49
pubmed: 30154710
Int J Numer Method Biomed Eng. 2020 Nov;36(11):e3395
pubmed: 32794272