Toward neural health measurements for cochlear implantation: The relationship among electrode positioning, the electrically evoked action potential, impedances and behavioral stimulation levels.
ECAP
cochlear implant
electrode positioning
impedances
neural health
stimulation levels
Journal
Frontiers in neurology
ISSN: 1664-2295
Titre abrégé: Front Neurol
Pays: Switzerland
ID NLM: 101546899
Informations de publication
Date de publication:
2023
2023
Historique:
received:
08
11
2022
accepted:
10
01
2023
entrez:
27
2
2023
pubmed:
28
2
2023
medline:
28
2
2023
Statut:
epublish
Résumé
Estimating differences in neural health across different sites within the individual cochlea potentially enables clinical applications for subjects with a cochlear implant. The electrically evoked compound action potential (ECAP) is a measure of neural excitability that possibly provides an indication of a neural condition. There are many factors, however, that affect this measure and increase the uncertainty of its interpretation. To better characterize the ECAP response, its relationship with electrode positioning, impedances, and behavioral stimulation levels was explored. A total of 14 adult subjects implanted with an Advanced Bionics cochlear electrode array were prospectively followed up from surgery to 6 months postoperative. Insertion depth, distance to the modiolus, and distance to the medial wall were assessed for each electrode by postoperative CT analysis. ECAPs were measured intraoperatively and at three visits postoperatively on all 16 electrodes using the NRI feature of clinical programming software and characterized using multiple parameters. Impedances and behavioral stimulation levels were measured at every fitting session. Patterns in ECAPs and impedances were consistent over time, but high variability existed among subjects and between different positions in the cochlea. Electrodes located closer to the apex of the cochlea and closer to the modiolus generally showed higher neural excitation and higher impedances. Maximum loudness comfort levels were correlated strongly with the level of current needed to elicit a response of 100 μV ECAP. Multiple factors contribute to the ECAP response in subjects with a cochlear implant. Further research might address whether the ECAP parameters used in this study will benefit clinical electrode fitting or the assessment of auditory neuron integrity.
Identifiants
pubmed: 36846130
doi: 10.3389/fneur.2023.1093265
pmc: PMC9948626
doi:
Types de publication
Journal Article
Langues
eng
Pagination
1093265Informations de copyright
Copyright © 2023 Lambriks, van Hoof, Debruyne, Janssen, Hof, Hellingman, Devocht and George.
Déclaration de conflit d'intérêts
The work of LL, JD, MH, and ED in this investigator-initiated study was financially supported by a research grant from Advanced Bionics Inc. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
J Assoc Res Otolaryngol. 2020 Jun;21(3):259-275
pubmed: 32342256
Audiol Neurootol. 2008;13(3):193-205
pubmed: 18212519
J Am Acad Audiol. 2006 Jun;17(6):413-31; quiz 462
pubmed: 16866005
J Acoust Soc Am. 2007 Mar;121(3):1642-53
pubmed: 17407901
Front Neurosci. 2017 Jun 23;11:339
pubmed: 28690494
Laryngoscope Investig Otolaryngol. 2016 Nov 29;1(6):169-174
pubmed: 28894813
Audiol Neurootol. 2016;21(1):54-67
pubmed: 26891130
JAMA Otolaryngol Head Neck Surg. 2013 Mar;139(3):265-72
pubmed: 23429927
Ear Hear. 2018 Mar/Apr;39(2):344-358
pubmed: 28885234
Cochlear Implants Int. 2016 Nov;17(6):251-262
pubmed: 27900916
Ear Hear. 2018 May/Jun;39(3):401-411
pubmed: 28945656
Ear Hear. 2001 Dec;22(6):471-86
pubmed: 11770670
Otol Neurotol. 2016 Oct;37(9):1307-13
pubmed: 27579839
J Assoc Res Otolaryngol. 2014 Apr;15(2):187-202
pubmed: 24469861
J Assoc Res Otolaryngol. 2016 Jun;17(3):237-52
pubmed: 26926152
Otol Neurotol. 2018 Apr;39(4):e231-e239
pubmed: 29494467
Otol Neurotol. 2016 Dec;37(10):1662-1668
pubmed: 27755365
Hear Res. 2006 May;215(1-2):47-55
pubmed: 16644157
Audiol Neurootol. 2013;18(6):406-13
pubmed: 24157488
Magn Reson Imaging. 2012 Nov;30(9):1323-41
pubmed: 22770690
Audiol Neurootol. 2016;21(5):316-325
pubmed: 27871074
Audiol Neurootol. 2006;11 Suppl 1:27-33
pubmed: 17063008
Hear Res. 2014 Oct;316:65-72
pubmed: 25124151
J Acoust Soc Am. 1990 Sep;88(3):1385-91
pubmed: 2229673
Clin Exp Otorhinolaryngol. 2012 Dec;5(4):194-200
pubmed: 23205223
PLoS One. 2021 Feb 19;16(2):e0246545
pubmed: 33606685
IEEE Trans Biomed Eng. 2021 Feb;68(2):545-555
pubmed: 32746052
Ear Hear. 2002 Feb;23(1 Suppl):28S-40S
pubmed: 11883764
Cochlear Implants Int. 2015;16 Suppl 4:1-19
pubmed: 26642899
Otol Neurotol. 2010 Sep;31(7):1041-8
pubmed: 20634770
Ear Hear. 2014 May-Jun;35(3):e99-e109
pubmed: 24496291
J Am Acad Audiol. 2010 Jan;21(1):5-15
pubmed: 20085195
Front Surg. 2016 Jan 25;3:2
pubmed: 26835459
Audiol Neurootol. 2007;12(5):277-84
pubmed: 17536196
Trials. 2020 Jun 23;21(1):564
pubmed: 32576247
Otol Neurotol. 2022 Feb 1;43(2):e153-e164
pubmed: 35015749
Front Neurol. 2022 Jun 27;13:886171
pubmed: 35832176
Hear Res. 2004 Feb;188(1-2):104-16
pubmed: 14759574
Ear Hear. 2001 Aug;22(4):289-99
pubmed: 11527036
J Assoc Res Otolaryngol. 2021 Feb;22(1):81-94
pubmed: 33108575
Ear Hear. 2011 Feb;32(1):104-13
pubmed: 20686409
J Assoc Res Otolaryngol. 2014 Apr;15(2):293-304
pubmed: 24477546
Otol Neurotol. 2016 Dec;37(10):1549-1554
pubmed: 27755356
Ear Hear. 2018 Jul/Aug;39(4):701-711
pubmed: 29219858
Laryngoscope. 2021 Jun;131(6):1358-1368
pubmed: 33159469
Ann Otol Rhinol Laryngol. 2016 May;125(5):378-84
pubmed: 26631764
Am J Otol. 1998 May;19(3):320-7
pubmed: 9596182
PLoS One. 2016 Feb 03;11(2):e0147552
pubmed: 26840740
J Acoust Soc Am. 1990 Jun;87(6):2592-605
pubmed: 2373794
Laryngoscope. 1978 Aug;88(8 Pt 1):1231-46
pubmed: 672357
Ear Hear. 2002 Jun;23(3):184-97
pubmed: 12072611
Otol Neurotol. 2020 Oct;41(9):e1091-e1097
pubmed: 32925843
J Am Acad Audiol. 2020 Oct;31(9):674-679
pubmed: 33556966
Eur Arch Otorhinolaryngol. 2015 Oct;272(10):2697-701
pubmed: 25145642
Otol Neurotol. 2016 Jan;37(1):31-7
pubmed: 26649603
Int J Pediatr Otorhinolaryngol. 2016 Mar;82:28-33
pubmed: 26857311