Prenatal household size and composition are associated with infant fecal bacterial diversity in Cebu, Philippines.
household composition
infant microbiome
social environment
Journal
American journal of biological anthropology
ISSN: 2692-7691
Titre abrégé: Am J Biol Anthropol
Pays: United States
ID NLM: 101770171
Informations de publication
Date de publication:
05 2023
05 2023
Historique:
revised:
02
02
2023
received:
06
12
2021
accepted:
08
02
2023
medline:
11
4
2023
pubmed:
28
2
2023
entrez:
27
2
2023
Statut:
ppublish
Résumé
The gut microbiome (GM) connects physical and social environments to infant health. Since the infant GM affects immune system development, there is interest in understanding how infants acquire microbes from mothers and other household members. As a part of the Cebu Longitudinal Health and Nutrition Survey (CLHNS), we paired fecal samples (proxy for the GM) collected from infants living in Metro Cebu, Philippines at 2 weeks (N = 39) and 6 months (N = 36) with maternal interviews about prenatal household composition. We hypothesized that relationships between prenatal household size and composition and infant GM bacterial diversity (as measured in fecal samples) would vary by infant age, as well as by household member age and sex. We also hypothesized that infant GM bacterial abundances would differ by prenatal household size and composition. Data from 16 S rRNA bacterial gene sequencing show that prenatal household size was the most precise estimator of infant GM bacterial diversity, and that the direction of the association between this variable and infant GM bacterial diversity changed between the two time points. The abundances of bacterial families in the infant GM varied by prenatal household variables. Results highlight the contributions of various household sources to the bacterial diversity of the infant GM, and suggest that prenatal household size is a useful measure for estimating infant GM bacterial diversity in this cohort. Future research should measure the effect of specific sources of household bacterial exposures, including social interactions with caregivers, on the infant GM.
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
45-58Informations de copyright
© 2023 The Authors. American Journal of Biological Anthropology published by Wiley Periodicals LLC.
Références
Adair, L. S., Popkin, B. M., Akin, J. S., Guilkey, D. K., Gultiano, S., Borja, J., Perez, L., Kuzawa, C. W., McDade, T., & Hindin, M. J. (2011). Cohort profile: The Cebu longitudinal health and nutrition survey. International Journal of Epidemiology, 40(3), 619-625. https://doi.org/10.1093/ije/dyq085
Amato, K. R. (2017). An introduction to microbiome analysis for human biology applications. American Journal of Human Biology, 29(1), e22931. https://doi.org/10.1002/ajhb.22931
Arrieta, M.-C., Stiemsma, L. T., Dimitriu, P. A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M. J., Britton, H. M., Lefebvre, D. L., Subbarao, P., Mandhane, P., Becker, A., McNagny, K. M., Sears, M. R., Kollmann, T., the CHILD Study Investigators, Mohn, W. W., Turvey, S. E., & Brett Finlay, B. (2015). Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine, 7(307), 307ra152-307ra152. https://doi.org/10.1126/scitranslmed.aab2271
Asnicar, F., Manara, S., Zolfo, M., Truong, D. T., Scholz, M., Armanini, F., Ferretti, P., Gorfer, V., Pedrotti, A., Tett, A., & Segata, N. (2017). Studying vertical microbiome rransmission from mothers to infants by strain-level metagenomic profiling. MSystems, 2(1), e00164-16. https://doi.org/10.1128/mSystems.00164-16
Azad, M. B., Konya, T., Maughan, H., Guttman, D. S., Field, C. J., Chari, R. S., Sears, M. R., Becker, A. B., Scott, J. A., & Kozyrskyj, A. L. (2013). Gut microbiota of healthy Canadian infants: Profiles by mode of delivery and infant diet at 4 months. CMAJ, 185(5), 385-394. https://doi.org/10.1503/cmaj.121189
Azad, M. B., Konya, T., Maughan, H., Guttman, D. S., Field, C. J., Sears, M. R., Becker, A. B., Scott, J. A., Kozyrskyj, A. L., & CHILD Study Investigators. (2013). Infant gut microbiota and the hygiene hypothesis of allergic disease: Impact of household pets and siblings on microbiota composition and diversity. Allergy, Asthma & Clinical Immunology, 9(1), 15. https://doi.org/10.1186/1710-1492-9-15
Berner, D., & Amrhein, V. (2022). Why and how we should join the shift from significance testing to estimation. Journal of Evolutionary Biology, 35, 777-787. https://doi.org/10.1111/jeb.14009
Bokulich, N. A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., Lieber, A, D., Wu, F., Perez-Perez, G. I., Chen, Y., Schweizer, W., Zheng, X., Contreras, M., Dominguez-Bello, M. G., & Blaser, M. J. (2016). Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine, 8(343), 343ra82. https://doi.org/10.1126/scitranslmed.aad7121
Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K., Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo-Rodríguez, A. M., Chase, J., … Caporaso, J. G. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8), 852-857. https://doi.org/10.1038/s41587-019-0209-9
Brestoff, J. R., & Artis, D. (2013). Commensal bacteria at the interface of host metabolism and the immune system. Nature Immunology, 14(7), 676-684. https://doi.org/10.1038/ni.2640
Brito, I. L., Gurry, T., Zhao, S., Huang, K., Young, S. K., Shea, T. P., Naisilisili, W., Jenkins, A. P., Jupiter, S. D., Gevers, D., & Alm, E. J. (2019). Transmission of human-associated microbiota along family and social networks. Nature Microbiology, 4(6), 964-971. https://doi.org/10.1038/s41564-019-0409-6
Carlson, A. L., Xia, K., Azcarate-Peril, M. A., Goldman, B. D., Ahn, M., Styner, M. A., Thompson, A. L., Geng, X., Gilmore, J. H., & Knickmeyer, R. C. (2018). Infant gut microbiome associated with cognitive development. Biological Psychiatry, 83(2), 148-159. https://doi.org/10.1016/j.biopsych.2017.06.021
David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E., Wolfe, B. E., Ling, A. V., Devlin, A. S., Varma, Y., Fischbach, M. A., Biddinger, S. B., Dutton, R. J., & Turnbaugh, P. J. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505(7484), 559-563. https://doi.org/10.1038/nature12820
De Vadder, F., Kovatcheva-Datchary, P., Goncalves, D., Vinera, J., Zitoun, C., Duchampt, A., Bäckhed, F., & Mithieux, G. (2014). Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell, 156(1), 84-96. https://doi.org/10.1016/j.cell.2013.12.016
Debray, R., Herbert, R. A., Jaffe, A. L., Crits-Christoph, A., Power, M. E., & Koskella, B. (2021). Priority effects in microbiome assembly. Nature Reviews Microbiology, 1-13, 109-121. https://doi.org/10.1038/s41579-021-00604-w
den Besten, G., Lange, K., Havinga, R., van Dijk, T. H., Gerding, A., van Eunen, K., Müller, M., Groen, A. K., Hooiveld, G. J., Bakker, B. M., & Reijngoud, D.-J. (2013). Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids. American Journal of Physiology. Gastrointestinal and Liver Physiology, 305(12), G900-G910. https://doi.org/10.1152/ajpgi.00265.2013
Differding, M. K., Benjamin-Neelon, S. E., Hoyo, C., Østbye, T., & Mueller, N. T. (2020). Timing of complementary feeding is associated with gut microbiota diversity and composition and short chain fatty acid concentrations over the first year of life. BMC Microbiology, 20(1), 56. https://doi.org/10.1186/s12866-020-01723-9
Dominguez-Bello, M. G., Costello, E. K., Contreras, M., Magris, M., Hidalgo, G., Fierer, N., & Knight, R. (2010). Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proceedings of the National Academy of Sciences, 107(26), 11971-11975. https://doi.org/10.1073/pnas.1002601107
Eisenhofer, R., Minich, J. J., Marotz, C., Cooper, A., Knight, R., & Weyrich, L. S. (2019). Contamination in low microbial biomass microbiome studies: Issues and recommendations. Trends in Microbiology, 27(2), 105-117. https://doi.org/10.1016/j.tim.2018.11.003
Fehr, K., Moossavi, S., Sbihi, H., Boutin, R. C. T., Bode, L., Robertson, B., Yonemitsu, C., Field, C. J., Becker, A. B., Mandhane, P. J., Sears, M. R., Khafipour, E., Moraes, T. J., Subbarao, P., Finlay, B. B., Turvey, S. E., & Azad, M. B. (2020). Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers' milk and the infant gut: The CHILD cohort study. Cell Host & Microbe, 28(2), 285-297.e4. https://doi.org/10.1016/j.chom.2020.06.009
Ferretti, P., Pasolli, E., Tett, A., Asnicar, F., Gorfer, V., Fedi, S., Armanini, F., Truong, D. T., Manara, S., Zolfo, M., Beghini, F., Bertorelli, R., De Sanctis, V., Bariletti, I., Canto, R., Clementi, R., Cologna, M., Crifò, T., Cusumano, G., … Segata, N. (2018). Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host & Microbe, 24(1), 133-145.e5. https://doi.org/10.1016/j.chom.2018.06.005
Gelman, A., & Greenland, S. (2019). Are confidence intervals better termed “uncertainty intervals”? BMJ, 366, l5381. https://doi.org/10.1136/bmj.l5381
Gensollen, T., Iyer, S. S., Kasper, D. L., & Blumberg, R. S. (2016). How colonization by microbiota in early life shapes the immune system. Science, 352(6285), 539-544. https://doi.org/10.1126/science.aad9378
Hewlett, B. S. (1993). Intimate fathers: The nature and context of aka pygmy paternal infant care. University of Michigan Press.
Ho, J., Tumkaya, T., Aryal, S., Choi, H., & Claridge-Chang, A. (2019). Moving beyond P values: Data analysis with estimation graphics. Nature Methods, 16(7), Article 7, 565-566. https://doi.org/10.1038/s41592-019-0470-3
Ho, N. T., Li, F., Lee-Sarwar, K. A., Tun, H. M., Brown, B. P., Pannaraj, P. S., Bender, J. M., Azad, M. B., Thompson, A. L., Weiss, S. T., Azcarate-Peril, M. A., Litonjua, A. A., Kozyrskyj, A. L., Jaspan, H. B., Aldrovandi, G. M., & Kuhn, L. (2018). Meta-analysis of effects of exclusive breastfeeding on infant gut microbiota across populations. Nature Communications, 9(1), 4169. https://doi.org/10.1038/s41467-018-06473-x
Holmes, E., Li, J. V., Marchesi, J. R., & Nicholson, J. K. (2012). Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk. Cell Metabolism, 16(5), 559-564. https://doi.org/10.1016/j.cmet.2012.10.007
Hung, C.-H., & Chung, H.-H. (2001). The effects of postpartum stress and social support on postpartum women's health status. Journal of Advanced Nursing, 36(5), 676-684. https://doi.org/10.1046/j.1365-2648.2001.02032.x
Jahnke, J. R., Roach, J., Azcarate-Peril, M. A., & Thompson, A. L. (2021). Maternal precarity and HPA axis functioning shape infant gut microbiota and HPA axis development in humans. PLoS One, 16(5), e0251782. https://doi.org/10.1371/journal.pone.0251782
Jost, L. (2006). Entropy and diversity. Oikos, 113(2), 363-375. https://doi.org/10.1111/j.2006.0030-1299.14714.x
Kang, L. J., Vu, K. N., Koleva, P. T., Field, C. J., Chow, A., Azad, M. B., Becker, A. B., Mandhane, P. J., Moraes, T. J., Sears, M. R., Lefebvre, D. L., Turvey, S. E., Subbarao, P., Lou, W. Y. W., Scott, J. A., & Kozyrskyj, A. L. (2020). Maternal psychological distress before birth influences gut immunity in mid-infancy. Clinical & Experimental Allergy, 50(2), 178-188. https://doi.org/10.1111/cea.13551
Konner, M. (2017). Hunter-gatherer infancy and childhood. In B. S. Hewlett & M. E. Lamb (Eds.), Hunter-gatherer childhoods (1st ed., pp. 19-64). Routledge. https://doi.org/10.4324/9780203789445-3
Korpela, K., Costea, P., Coelho, L. P., Kandels-Lewis, S., Willemsen, G., Boomsma, D. I., Segata, N., & Bork, P. (2018). Selective maternal seeding and environment shape the human gut microbiome. Genome Research, 28(4), 561-568. https://doi.org/10.1101/gr.233940.117
Kuzawa, C., Adair, L., Bechayda, S., Borja, J., Carba, D., Duazo, P., Eisenberg, D., Georgiev, A., Gettler, L., Lee, N., Quinn, E., Rosenbaum, S., Rutherford, J., Ryan, C., & Mcdade, T. (2020). Evolutionary life history theory as an organising framework for cohort studies: Insights from the Cebu longitudinal health and nutrition survey. Annals of Human Biology, 47, 94-105. https://doi.org/10.1080/03014460.2020.1742787
Lane, A. A., McGuire, M. K., McGuire, M. A., Williams, J. E., Lackey, K. A., Hagen, E. H., Kaul, A., Gindola, D., Gebeyehu, D., Flores, K. E., Foster, J. A., Sellen, D. W., Kamau-Mbuthia, E. W., Kamundia, E. W., Mbugua, S., Moore, S. E., Prentice, A. M., Kvist, L. J., Otoo, G. E., … Meehan, C. L. (2019). Household composition and the infant fecal microbiome: The INSPIRE study. American Journal of Physical Anthropology, 169(3), 526-539. https://doi.org/10.1002/ajpa.23843
Laursen, M. F., Zachariassen, G., Bahl, M. I., Bergström, A., Høst, A., Michaelsen, K. F., & Licht, T. R. (2015). Having older siblings is associated with gut microbiota development during early childhood. BMC Microbiology, 15(1), 154. https://doi.org/10.1186/s12866-015-0477-6
Lax, S., Smith, D. P., Hampton-Marcell, J., Owens, S. M., Handley, K. M., Scott, N. M., Gibbons, S. M., Larsen, P., Shogan, B. D., Weiss, S., Metcalf, J. L., Ursell, L. K., Vázquez-Baeza, Y., Treuren, W. V., Hasan, N. A., Gibson, M. K., Colwell, R., Dantas, G., Knight, R., & Gilbert, J. A. (2014). Longitudinal analysis of microbial interaction between humans and the indoor environment. Science, 345(6200), 1048-1052. https://doi.org/10.1126/science.1254529
Lin, H., & Peddada, S. D. (2020). Analysis of compositions of microbiomes with bias correction. Nature communications, 11(1), article 1, 11. https://doi.org/10.1038/s41467-020-17041-7
Maher, S. E., O'Brien, E. C., Moore, R. L., Byrne, D. F., Geraghty, A. A., Saldova, R., Murphy, E. F., Sinderen, D. V., Cotter, P. D., & McAuliffe, F. M. (2020). The association between the maternal diet and the maternal and infant gut microbiome: A systematic review. British Journal of Nutrition, 1-29, 1-29. https://doi.org/10.1017/S0007114520000847
Mallott, E. K., & Amato, K. R. (2018). The microbial reproductive ecology of white-faced capuchins (Cebus capucinus). American Journal of Primatology, 80(8), e22896. https://doi.org/10.1002/ajp.22896
Manus, M. B. (2021). Ecological processes and human behavior provide a framework for studying the skin microbial Metacommunity. Microbial Ecology, 84, 689-702. https://doi.org/10.1007/s00248-021-01884-8
Manus, M. B., Kuthyar, S., Perroni-Marañón, A. G., Núñez-de la Mora, A., & Amato, K. R. (2020). Infant skin bacterial communities vary by skin site and infant age across populations in Mexico and the United States. MSystems, 5(6), e00834-e00820. https://doi.org/10.1128/mSystems.00834-20
McCall, L.-I., Callewaert, C., Zhu, Q., Song, S. J., Bouslimani, A., Minich, J. J., Ernst, M., Ruiz-Calderon, J. F., Cavallin, H., Pereira, H. S., Novoselac, A., Hernandez, J., Rios, R., Branch, O. H., Blaser, M. J., Paulino, L. C., Dorrestein, P. C., Knight, R., & Dominguez-Bello, M. G. (2020). Home chemical and microbial transitions across urbanization. Nature Microbiology, 5(1), 108-115. https://doi.org/10.1038/s41564-019-0593-4
McDade, T. W., Hoke, M., Borja, J. B., Adair, L. S., & Kuzawa, C. (2013). Do environments in infancy moderate the association between stress and inflammation in adulthood? Initial evidence from a birth cohort in The Philippines. Brain, Behavior, and Immunity, 31, 23-30. https://doi.org/10.1016/j.bbi.2012.08.010
Meehan, C. L. (2005). The effects of residential locality on parental and alloparental investment among the aka foragers of the Central African Republic. Human Nature, 16(1), 58-80. https://doi.org/10.1007/s12110-005-1007-2
Meehan, C. L. (2008). Allomaternal investment and relational uncertainty among Ngandu farmers of the Central African Republic. Human Nature, 19(2), 211-226. https://doi.org/10.1007/s12110-008-9039-z
Meehan, C. L., Lackey, K. A., Hagen, E. H., Williams, J. E., Roulette, J., Helfrecht, C., McGuire, M. A., & McGuire, M. K. (2018). Social networks, cooperative breeding, and the human milk microbiome. American Journal of Human Biology, 30(4), e23131. https://doi.org/10.1002/ajhb.23131
Miller, E. T., Svanbäck, R., & Bohannan, B. J. M. (2018). Microbiomes as Metacommunities: Understanding host-associated microbes through Metacommunity ecology. Trends in Ecology & Evolution, 33(12), 926-935. https://doi.org/10.1016/j.tree.2018.09.002
Miller, G. E., Engen, P. A., Gillevet, P. M., Shaikh, M., Sikaroodi, M., Forsyth, C. B., Mutlu, E., & Keshavarzian, A. (2016). Lower neighborhood socioeconomic status associated with reduced diversity of the colonic microbiota in healthy adults. PLoS One, 11(2), e0148952. https://doi.org/10.1371/journal.pone.0148952
Moossavi, S., Sepehri, S., Robertson, B., Bode, L., Goruk, S., Field, C. J., Lix, L. M., de Souza, R. J., Becker, A. B., Mandhane, P. J., Turvey, S. E., Subbarao, P., Moraes, T. J., Lefebvre, D. L., Sears, M. R., Khafipour, E., & Azad, M. B. (2019). Composition and variation of the human milk microbiota are influenced by maternal and early-life factors. Cell Host & Microbe, 25(2), 324-335.e4. https://doi.org/10.1016/j.chom.2019.01.011
Mueller, N. T., Bakacs, E., Combellick, J., Grigoryan, Z., & Dominguez-Bello, M. G. (2015). The infant microbiome development: Mom matters. Trends in Molecular Medicine, 21(2), 109-117. https://doi.org/10.1016/j.molmed.2014.12.002
Perry, R. J., Peng, L., Barry, N. A., Cline, G. W., Zhang, D., Cardone, R. L., Petersen, K. F., Kibbey, R. G., Goodman, A. L., & Shulman, G. I. (2016). Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome. Nature, 534(7606), 213-217. https://doi.org/10.1038/nature18309
Rainey, F. A. (2009). Family X. Veillonellaceae Rogosa 1971b, 232AL. Bergey's manual of systematic bacteriology, 3(7484), 1059-1129. https://doi.org/10.1038/nature12820
R Core Team. (2021). R: A Language and Environment for StatisticalComputing. R Foundation for Statistical Computing, Vienna. https://www.r-project.org/
Rodriguez, N., Tun, H. M., Field, C. J., Mandhane, P. J., Scott, J. A., & Kozyrskyj, A. L. (2021). Prenatal depression, breastfeeding, and infant gut microbiota. Frontiers in Microbiology, 12, 664257. https://doi.org/10.3389/fmicb.2021.664257
Rook, G. A. W. (2010). 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: Darwinian medicine and the ‘hygiene’ or ‘old friends’ hypothesis. Clinical and Experimental Immunology, 160(1), 70-79. https://doi.org/10.1111/j.1365-2249.2010.04133.x
Rook, G. A. W., Adams, V., Hunt, J., Palmer, R., Martinelli, R., & Brunet, L. R. (2004). Mycobacteria and other environmental organisms as immunomodulators for immunoregulatory disorders. Springer Seminars in Immunopathology, 25(3), 237-255. https://doi.org/10.1007/s00281-003-0148-9
Rosenbaum, S., Kuzawa, C. W., McDade, T. W., Avila, J., Bechayda, S. A., & Gettler, L. T. (2021). Fathers' care in context: ‘Facultative,’ flexible fathers respond to work demands and child age, but not to alloparental help, in Cebu. Philippines. Evolution and Human Behavior, 42(6), 534-546. https://doi.org/10.1016/j.evolhumbehav.2021.05.003
Smith, R. J. (2018). The continuing misuse of null hypothesis significance testing in biological anthropology. American Journal of Physical Anthropology, 166(1), 236-245. https://doi.org/10.1002/ajpa.23399
Soininen, L., Roslund, M. I., Nurminen, N., Puhakka, R., Laitinen, O. H., Hyöty, H., & Sinkkonen, A. (2022). Indoor green wall affects health-associated commensal skin microbiota and enhances immune regulation: A randomized trial among urban office workers. Scientific Reports, 12(1), Article 1. https://doi.org/10.1038/s41598-022-10432-4
Song, S. J., Lauber, C., Costello, E. K., Lozupone, C. A., Humphrey, G., Berg-Lyons, D., Caporaso, J. G., Knights, D., Clemente, J. C., Nakielny, S., Gordon, J. I., Fierer, N., & Knight, R. (2013). Cohabiting family members share microbiota with one another and with their dogs. eLife, 2, e00458. https://doi.org/10.7554/eLife.00458
Strachan, D. P. (1989). Hay fever, hygiene, and household size. British Medical Journal, 299(6710), 1259-1260. https://doi.org/10.1136/bmj.299.6710.1259
Tallman, P. S., Kuzawa, C., Adair, L., Borja, J. B., & McDade, T. W. (2012). Microbial exposures in infancy predict levels of the immunoregulatory cytokine interleukin-4 in filipino young adults. American Journal of Human Biology, 24(4), 446-453. https://doi.org/10.1002/ajhb.22244
Tang, W. H. W., & Hazen, S. L. (2017). Microbiome, trimethylamine N-oxide, and cardiometabolic disease. Translational Research, 179, 108-115. https://doi.org/10.1016/j.trsl.2016.07.007
Tennyson, R. L., Gettler, L. T., Kuzawa, C. W., Hayes, M. G., Agustin, S. S., & Eisenberg, D. T. A. (2018). Lifetime socioeconomic status and early life microbial environments predict adult blood telomere length in The Philippines. American Journal of Human Biology, 30(5), e23145. https://doi.org/10.1002/ajhb.23145
Thompson, A. L., Monteagudo-Mera, A., Cadenas, M. B., Lampl, M. L., & Azcarate-Peril, M. A. (2015). Milk- and solid-feeding practices and daycare attendance are associated with differences in bacterial diversity, predominant communities, and metabolic and immune function of the infant gut microbiome. Frontiers in Cellular and Infection Microbiology, 5, 1-15. https://doi.org/10.3389/fcimb.2015.00003
Thompson, L. R., Sanders, J. G., McDonald, D., Amir, A., Ladau, J., Locey, K. J., Prill, R. J., Tripathi, A., Gibbons, S. M., Ackermann, G., Navas-Molina, J. A., Janssen, S., Kopylova, E., Vázquez-Baeza, Y., González, A., Morton, J. T., Mirarab, S., Xu, Z. Z., Jiang, L., … Knight, R. (2017). A communal catalogue reveals Earth's multiscale microbial diversity. Nature, 551(7681), 457-463. https://doi.org/10.1038/nature24621
Urban, J., Fergus, D. J., Savage, A. M., Ehlers, M., Menninger, H. L., Dunn, R. R., & Horvath, J. E. (2016). The effect of habitual and experimental antiperspirant and deodorant product use on the armpit microbiome. PeerJ, 4, e1605. https://doi.org/10.7717/peerj.1605
Valeggia, C. R., & Fernández-Duque, E. (2022). Moving biological anthropology research beyond p < 0.05. American Journal of Biological Anthropology, 177(2), 193-195. https://doi.org/10.1002/ajpa.24444
Walters, W., Hyde, E. R., Berg-Lyons, D., Ackermann, G., Humphrey, G., Parada, A., Gilbert, J. A., Jansson, J. K., Caporaso, J. G., Fuhrman, J. A., Apprill, A., & Knight, R. (2016). Improved bacterial 16 S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. MSystems, 1(1), e00009-e00015. https://doi.org/10.1128/mSystems.00009-15
Wickham, H., Chang, W., & Wickham, M. H. (2016). Package ‘ggplot2’. Create elegant data visualisations using the grammar of graphics. Version, 2(1), 1-189.
Willis, A., Bunge, J., & Whitman, T. (2017). Improved detection of changes in species richness in high diversity microbial communities. Journal of the Royal Statistical Society: Series C: Applied Statistics, 66(5), 963-977. https://doi.org/10.1111/rssc.12206
Willis, A. D. (2019). Rarefaction, alpha diversity, and statistics. Frontiers in Microbiology, 10, 2407. https://doi.org/10.3389/fmicb.2019.02407
Willis, A. D., & Martin, B. D. (2018). DivNet: Estimating diversity in networked communities [Preprint]. Bioinformatics, 305045. https://doi.org/10.1101/305045
Yang, I., Corwin, E. J., Brennan, P. A., Jordan, S., Murphy, J. R., & Dunlop, A. (2016). The infant microbiome: Implications for infant health and neurocognitive development. Nursing Research, 65(1), 76-88. https://doi.org/10.1097/NNR.0000000000000133
Yatsunenko, T., Rey, F. E., Manary, M. J., Trehan, I., Dominguez-Bello, M. G., Contreras, M., Magris, M., Hidalgo, G., Baldassano, R. N., Anokhin, A. P., Heath, A. C., Warner, B., Reeder, J., Kuczynski, J., Caporaso, J. G., Lozupone, C. A., Lauber, C., Clemente, J. C., Knights, D., … Gordon, J. I. (2012). Human gut microbiome viewed across age and geography. Nature, 486(7402), 222-227. https://doi.org/10.1038/nature11053
Yu, J. J., Manus, M. B., Mueller, O., Windsor, S. C., Horvath, J. E., & Nunn, C. L. (2018). Antibacterial soap use impacts skin microbial communities in rural Madagascar. PLoS One, 13(8), e0199899. https://doi.org/10.1371/journal.pone.0199899
Zhu, W., Gregory, J. C., Org, E., Buffa, J. A., Gupta, N., Wang, Z., Li, L., Fu, X., Wu, Y., Mehrabian, M., Sartor, R. B., McIntyre, T. M., Silverstein, R. L., Tang, W. H. W., DiDonato, J. A., Brown, J. M., Lusis, A. J., & Hazen, S. L. (2016). Gut microbial metabolite TMAO enhances platelet Hyperreactivity and thrombosis risk. Cell, 165(1), 111-124. https://doi.org/10.1016/j.cell.2016.02.011