Organocatalytic Synthesis of Triflones Bearing Two Non-Adjacent Stereogenic Centers.
Non-Adjacent Stereocenters
Organocatalysis
Peptides
Stereoselective Synthesis
Triflones
Journal
Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543
Informations de publication
Date de publication:
17 Apr 2023
17 Apr 2023
Historique:
received:
11
01
2023
medline:
28
2
2023
pubmed:
28
2
2023
entrez:
27
2
2023
Statut:
ppublish
Résumé
Trifluoromethylsulfones (triflones) are useful compounds for synthesis and beyond. Yet, methods to access chiral triflones are scarce. Here, we present a mild and efficient organocatalytic method for the stereoselective synthesis of chiral triflones using α-aryl vinyl triflones, building blocks previously unexplored in asymmetric synthesis. The peptide-catalyzed reaction gives rise to a broad range of γ-triflylaldehydes with two non-adjacent stereogenic centers in high yields and stereoselectivities. A catalyst-controlled stereoselective protonation following a C-C bond formation is key to control over the absolute and relative configuration. Straightforward derivatization of the products into, e.g., disubstituted δ-sultones, γ-lactones, and pyrrolidine heterocycles highlights the synthetic versatility of the products.
Identifiants
pubmed: 36847408
doi: 10.1002/anie.202300537
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e202300537Subventions
Organisme : Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
ID : 200020_188729/1
Organisme : Scholarship Fund of the Swiss Chemical Industry (SSCI)
Organisme : Horizon 2020 Framework Programme
ID : 862081
Informations de copyright
© 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
Références
W. A. Sheppard, J. Am. Chem. Soc. 1963, 85, 1314-1318;
C. Hansch, R. M. Muir, T. Fujita, P. P. Maloney, F. Geiger, M. Streich, J. Am. Chem. Soc. 1963, 85, 2817-2824.
For examples, see:
C. Tse, A. R. Shoemaker, J. Adickes, M. G. Anderson, J. Chen, S. Jin, E. F. Johnson, K. C. Marsh, M. J. Mitten, P. Nimmer, L. Roberts, S. K. Tahir, Y. Xiao, X. Yang, H. Zhang, S. Fesik, S. H. Rosenberg, S. W. Elmore, Cancer Res. 2008, 68, 3421-3428;
A. R. Usera, P. M. Dolan, T. W. Kensler, G. H. Posner, Bioorg. Med. Chem. 2007, 15, 5509-5518.
For examples, see:
K. Ishihara, A. Hasegawa, H. Yamamoto, Angew. Chem. Int. Ed. 2001, 40, 4077-4079;
Angew. Chem. 2001, 113, 4201-4203;
R. Kargbo, Y. Takahashi, S. Bhor, G. R. Cook, G. C. Lloyd-Jones, I. R. Shepperson, J. Am. Chem. Soc. 2007, 129, 3846-3847;
A. Hasegawa, Y. Naganawa, M. Fushimi, K. Ishihara, H. Yamamoto, Org. Lett. 2006, 8, 3175-3178;
D. Höfler, M. van Gemmeren, P. Wedemann, K. Kaupmees, I. Leito, M. Leutzsch, J. B. Lingnau, B. List, Angew. Chem. Int. Ed. 2017, 56, 1411-1415;
Angew. Chem. 2017, 129, 1433-1437.
For examples, see:
H. Yanai, S. Hoshikawa, Y. Moriiwa, A. Shoji, A. Yanagida, T. Matsumoto, Angew. Chem. Int. Ed. 2021, 60, 5168-5172;
Angew. Chem. 2021, 133, 5228-5232;
C. Le Droumaguet, O. Mongin, M. H. V. Werts, M. Blanchard-Desce, Chem. Commun. 2005, 2, 2802-2804.
J. B. Hendrickson, A. Giga, J. Wareing, J. Am. Chem. Soc. 1974, 96, 2275-2276.
J. B. Hendrickson, D. D. Sternbach, K. W. Bair, Acc. Chem. Res. 1977, 10, 306-312.
G. Hellmann, A. Hack, E. Thiemermann, O. Luche, G. Raabe, H.-J. Gais, Chem. Eur. J. 2013, 19, 3869-3897.
For recent advances, see:
M. Nambo, J. C.-H. Yim, L. B. O. Freitas, Y. Tahara, Z. T. Ariki, Y. Maekawa, D. Yokogawa, C. M. Crudden, Nat. Commun. 2019, 10, 4528;
Y. Maekawa, M. Nambo, D. Yokogawa, C. M. Crudden, J. Am. Chem. Soc. 2020, 142, 15667-15672;
M. Nambo, E. C. Keske, J. P. G. Rygus, J. C.-H. Yim, C. M. Crudden, ACS Catal. 2017, 7, 1108-1112;
P. Chatelain, A. Sau, C. N. Rowley, J. Moran, Angew. Chem. Int. Ed. 2019, 58, 14959-14963;
Angew. Chem. 2019, 131, 15101-15105;
H. Wang, R.-Y. Yang, B. Xu, Chem. Eur. J. 2022, 28, e202104364.
X. H. Xu, K. Matsuzaki, N. Shibata, Chem. Rev. 2015, 115, 731-764.
V. Krishnamurti, C. Barrett, G. K. S. Prakash in Emerging Fluorinated Motifs: Synthesis, Properties and Applications (Eds.: J. Ma, D. Cahard), Wiley-VCH, Weinheim, 2020, pp. 477-549.
S. Nakamura, N. Hirata, T. Kita, R. Yamada, D. Nakane, N. Shibata, T. Toru, Angew. Chem. Int. Ed. 2007, 46, 7648-7650;
Angew. Chem. 2007, 119, 7792-7794;
F. Franco, S. Meninno, J. Overgaard, S. Rossi, M. Benaglia, A. Lattanzi, Org. Lett. 2022, 24, 4371-4376.
For examples, see:
J. Luo, Q. Cao, X. Cao, X. Zhao, Nat. Commun. 2018, 9, 527;
A. Eitzinger, J.-F. Brière, D. Cahard, M. Waser, Org. Biomol. Chem. 2020, 18, 405-408.
L.-N. Hua, H. Li, F.-L. Qing, Y. Huang, X.-H. Xu, Org. Biomol. Chem. 2016, 14, 8443-8447;
P.-P. Tian, H.-Q. Xiao, L. Wang, Y. Yu, Y. Huang, Tetrahedron Lett. 2019, 60, 1015-1018.
For the only prior example of a stereoselective organocatalytic conjugate addition to vinyl triflones (β-substituted), see: H. Li, J. Song, L. Deng, Tetrahedron 2009, 65, 3139-3148.
For reviews, see:
J. T. Mohr, A. Y. Hong, B. M. Stoltz, Nat. Chem. 2009, 1, 359-369;
J. P. Phelan, J. A. Ellman, Beilstein J. Org. Chem. 2016, 12, 1203-1228.
D. A. Alonso, A. Baeza, R. Chinchilla, C. Gómez, G. Guillena, I. M. Pastor, D. J. Ramón, Molecules 2017, 22, 895-946.
For stereoselective amine-catalyzed reactions with α-substituted nitroolefins, see:
B. Zheng, H. Wang, Y. Han, C. Liu, Y. Peng, Chem. Commun. 2013, 49, 4561-4563;
Y. Han, B. Zheng, Y. Peng, Adv. Synth. Catal. 2015, 357, 1136-1142.
For examples of cinchona alkaloid or thiourea-catalyzed reactions with α-substituted Michael acceptors, see:
B. Wang, F. Wu, Y. Wang, X. Liu, L. Deng, J. Am. Chem. Soc. 2007, 129, 768-769;
Z. Li, B. Hu, Y. Wu, C. Fei, L. Deng, Proc. Natl. Acad. Sci. USA 2018, 115, 1730-1735;
I. Iriarte, S. Vera, E. Badiola, A. Mielgo, M. Oiarbide, J. M. García, J. M. Odriozola, C. Palomo, Chem. Eur. J. 2016, 22, 13690-13696;
C. Yang, E.-G. Zhang, X. Li, J.-P. Cheng, Angew. Chem. Int. Ed. 2016, 55, 6506-6510;
Angew. Chem. 2016, 128, 6616-6620.
S. Mukherjee, J. W. Yang, S. Hoffmann, B. List, Chem. Rev. 2007, 107, 5471-5569.
K. L. Jensen, G. Dickmeiss, H. Jiang, Ł. Albrecht, K. A. Jørgensen, Acc. Chem. Res. 2012, 45, 248-264. See also:
Y. Hayashi, H. Gotoh, T. Hayashi, M. Shoji, Angew. Chem. Int. Ed. 2005, 44, 4212-4215;
Angew. Chem. 2005, 117, 4284-4287.
For reviews on peptide catalysis, see:
A. J. Metrano, A. J. Chinn, C. R. Shugrue, E. A. Stone, B. Kim, S. J. Miller, Chem. Rev. 2020, 120, 11479-11615;
E. A. C. Davie, S. M. Mennen, Y. Xu, S. J. Miller, Chem. Rev. 2007, 107, 5759-5812;
B. Lewandowski, H. Wennemers, Curr. Opin. Chem. Biol. 2014, 22, 40-46.
P. Krattiger, R. Kovasy, J. D. Revell, S. Ivan, H. Wennemers, Org. Lett. 2005, 7, 1101-1103.
For examples, see:
M. Wiesner, J. D. Revell, H. Wennemers, Angew. Chem. Int. Ed. 2008, 47, 1871-1874;
Angew. Chem. 2008, 120, 1897-1900;
R. Kastl, H. Wennemers, Angew. Chem. Int. Ed. 2013, 52, 7228-7232;
Angew. Chem. 2013, 125, 7369-7373;
J. Duschmalé, H. Wennemers, Chem. Eur. J. 2012, 18, 1111-1120;
T. Schnitzer, A. Budinská, H. Wennemers, Nat. Catal. 2020, 3, 143-147.
M. Wiesner, J. D. Revell, S. Tonazzi, H. Wennemers, J. Am. Chem. Soc. 2008, 130, 5610-5611;
M. Wiesner, M. Neuburger, H. Wennemers, Chem. Eur. J. 2009, 15, 10103-10109.
C. E. Grünenfelder, J. K. Kisunzu, H. Wennemers, Angew. Chem. Int. Ed. 2016, 55, 8571-8574;
Angew. Chem. 2016, 128, 8713-8716;
G. Vastakaite, C. E. Grünenfelder, H. Wennemers, Chem. Eur. J. 2022, 28, e202200215.
T. Schnitzer, H. Wennemers, J. Am. Chem. Soc. 2017, 139, 15356-15362;
J. S. Möhler, T. Schnitzer, H. Wennemers, Chem. Eur. J. 2020, 26, 15623-15628;
T. Schnitzer, J. W. Rackl, H. Wennemers, Chem. Sci. 2022, 13, 8963-8967.
Deposition numbers 2219883 (for F), 2219884 (for 3k), 2219885 (for 3n), 2219886 (for 2j) and 2219887 (for 2f) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
Synthetic methods towards α-substituted vinyl triflones are currently limited to aromatic α-substituents bearing electron-donating or weakly electron-withdrawing substituents. See ref. [5] and [13] for details.
α-Phenyl substituted Michael acceptors bearing SO2Ph or CF3 activating groups did not afford addition products, further highlighting the exceptional reactivity of α-aryl vinyl triflones (Scheme S1).
M. Seitz, O. Reiser, Curr. Opin. Chem. Biol. 2005, 9, 285-292.
E. Vitaku, D. T. Smith, J. T. Njardarson, J. Med. Chem. 2014, 57, 10257-10274.
S. Mondal, Chem. Rev. 2012, 112, 5339-5355.
A.-N. Alba, M. Viciano, R. Rios, ChemCatChem 2009, 1, 437-439.
C. Rigling, J. K. Kisunzu, J. Duschmalé, D. Häussinger, M. Wiesner, M.-O. Ebert, H. Wennemers, J. Am. Chem. Soc. 2018, 140, 10829-10838.
C. E. Grünenfelder, J. K. Kisunzu, N. Trapp, R. Kastl, H. Wennemers, Biopolymers 2017, 108, e22912.
Comparison of the crystal structure of catalyst F⋅TFA and the calculated structures of F and En-F show good overlay (Figure S8).
Control experiments showed that replacing one or both hydrogens of the Gln amide group by methyl groups in catalyst F decreases the diastereo- and enantioselectivity (Table S8).