The Coexistence of Bacterial Species Restructures Biofilm Architecture and Increases Tolerance to Antimicrobial Agents.

Enterococcus faecalis biofilm architecture biofilms environmental microbiology extracellular matrix interspecies interactions nutrient stress polymicrobial biofilm

Journal

Microbiology spectrum
ISSN: 2165-0497
Titre abrégé: Microbiol Spectr
Pays: United States
ID NLM: 101634614

Informations de publication

Date de publication:
27 Feb 2023
Historique:
entrez: 27 2 2023
pubmed: 28 2 2023
medline: 28 2 2023
Statut: aheadofprint

Résumé

Chronic infections caused by polymicrobial biofilms are often difficult to treat effectively, partially due to the elevated tolerance of polymicrobial biofilms to antimicrobial treatments. It is known that interspecific interactions influence polymicrobial biofilm formation. However, the underlying role of the coexistence of bacterial species in polymicrobial biofilm formation is not fully understood. Here, we investigated the effect of the coexistence of Enterococcus faecalis, Escherichia coli O157:H7, and Salmonella enteritidis on triple-species biofilm formation. Our results demonstrated that the coexistence of these three species enhanced the biofilm biomass and led to restructuring of the biofilm into a tower-like architecture. Furthermore, the proportions of polysaccharides, proteins, and eDNAs in the extracellular matrix (ECM) composition of the triple-species biofilm were significantly changed compared to those in the E. faecalis mono-species biofilm. Finally, we analyzed the transcriptomic profile of E. faecalis in response to coexistence with E. coli and S. enteritidis in the triple-species biofilm. The results suggested that E. faecalis established dominance and restructured the triple-species biofilm by enhancing nutrient transport and biosynthesis of amino acids, upregulating central carbon metabolism, manipulating the microenvironment through "biological weapons," and activating versatile stress response regulators. Together, the results of this pilot study reveal the nature of E. faecalis-harboring triple-species biofilms with a static biofilm model and provide novel insights for further understanding interspecies interactions and the clinical treatment of polymicrobial biofilms.

Identifiants

pubmed: 36847543
doi: 10.1128/spectrum.03581-22
pmc: PMC10100793
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e0358122

Références

Nat Rev Microbiol. 2019 Jan;17(2):82-94
pubmed: 30337708
Infect Immun. 2019 Jun 20;87(7):
pubmed: 31036600
Lett Appl Microbiol. 2020 Jul;71(1):3-25
pubmed: 32304575
Appl Environ Microbiol. 2008 Jun;74(11):3377-86
pubmed: 18408066
J Bacteriol. 2019 Dec 6;202(1):
pubmed: 31548277
J Food Prot. 2015 Jul;78(7):1320-6
pubmed: 26197283
Infect Immun. 1991 Apr;59(4):1239-46
pubmed: 1900808
Appl Environ Microbiol. 2018 Jul 2;84(14):
pubmed: 29752266
Euro Surveill. 2022 Jan;27(3):
pubmed: 35057901
ISME J. 2014 Oct;8(10):1974-88
pubmed: 24739628
Nat Med. 2018 Aug;24(8):1097-1103
pubmed: 30082869
mBio. 2021 Jun 29;12(3):e0101121
pubmed: 34126766
FEMS Microbiol Rev. 2009 Jan;33(1):206-24
pubmed: 19067751
Front Microbiol. 2020 Feb 28;11:307
pubmed: 32256460
Infect Immun. 2009 Sep;77(9):3626-38
pubmed: 19528211
Virulence. 2018 Dec 31;9(1):895-897
pubmed: 29405827
Front Microbiol. 2017 Jul 26;8:1390
pubmed: 28798731
J Clin Microbiol. 1985 Dec;22(6):996-1006
pubmed: 3905855
Carbohydr Polym. 2021 Apr 15;258:117695
pubmed: 33593568
ISME J. 2019 Dec;13(12):3054-3066
pubmed: 31455806
Cell Host Microbe. 2016 Oct 12;20(4):493-503
pubmed: 27736645
J Bacteriol. 2018 Nov 26;200(24):
pubmed: 30249706
Infect Immun. 2017 Nov 17;85(12):
pubmed: 28893918
Infect Immun. 2013 Aug;81(8):2662-8
pubmed: 23649090
Int J Food Microbiol. 2022 May 2;368:109612
pubmed: 35278797
Microbiol Mol Biol Rev. 2005 Jun;69(2):326-56
pubmed: 15944459
Arch Microbiol. 2020 Mar;202(2):233-246
pubmed: 31599337
Antimicrob Agents Chemother. 2001 Apr;45(4):999-1007
pubmed: 11257008
Int J Food Microbiol. 2006 Apr 25;108(2):155-63
pubmed: 16386814
Crit Rev Food Sci Nutr. 2020;60(13):2277-2293
pubmed: 31257907
Future Microbiol. 2016 Oct;11:1339-1357
pubmed: 27660887
Appl Environ Microbiol. 2018 Feb 14;84(5):
pubmed: 29269492
Trends Cell Biol. 2013 Jan;23(1):9-15
pubmed: 22999189
J Bacteriol. 2005 Nov;187(21):7193-203
pubmed: 16237003
Pathogens. 2022 Mar 12;11(3):
pubmed: 35335670
Virulence. 2016 May 18;7(4):481-90
pubmed: 26890494
mBio. 2018 May 22;9(3):
pubmed: 29789364
Proc Natl Acad Sci U S A. 2013 Oct 29;110(44):17981-6
pubmed: 24143808
J Biosci Bioeng. 2016 Jan;121(1):89-95
pubmed: 26168904
Trends Microbiol. 2018 Mar;26(3):229-242
pubmed: 29097091
Eur J Biochem. 1994 Jun 1;222(2):235-46
pubmed: 8020463
Microbiol Mol Biol Rev. 2019 Jul 17;83(3):
pubmed: 31315902
Future Microbiol. 2015;10(12):1997-2015
pubmed: 26592098
Int Endod J. 2015 Oct;48(10):916-25
pubmed: 26172346
Acta Paediatr. 2021 Jul;110(7):2240-2245
pubmed: 33755990
PLoS Comput Biol. 2021 Jan 7;17(1):e1007762
pubmed: 33412560
Fish Shellfish Immunol. 2019 Oct;93:135-143
pubmed: 31326583
NPJ Biofilms Microbiomes. 2017 Jun 30;3:15
pubmed: 28685097
Trends Microbiol. 2017 Apr;25(4):257-266
pubmed: 28089324
Trends Microbiol. 2014 Feb;22(2):84-91
pubmed: 24440178
Food Microbiol. 2018 Aug;73:17-28
pubmed: 29526203
Appl Microbiol Biotechnol. 2018 Dec;102(23):10183-10192
pubmed: 30232536
Front Microbiol. 2015 Aug 20;6:841
pubmed: 26347727
Int J Mol Sci. 2017 May 03;18(5):
pubmed: 28467378
Biofouling. 2020 Aug;36(7):846-861
pubmed: 32972252
FEMS Microbiol Rev. 2012 Sep;36(5):990-1004
pubmed: 22229800
J Appl Microbiol. 2022 Sep;133(3):1940-1955
pubmed: 35766106
ISME J. 2018 Aug;12(8):1940-1951
pubmed: 29670216
PLoS One. 2015 May 15;10(5):e0126143
pubmed: 25978463
Trends Microbiol. 2020 Aug;28(8):668-681
pubmed: 32663461
Nat Rev Microbiol. 2016 Sep;14(9):589-600
pubmed: 27452230
Eur J Clin Microbiol Infect Dis. 2015 Aug;34(8):1667-73
pubmed: 25987245
BMC Microbiol. 2013 Nov 14;13:257
pubmed: 24228850
J Med Microbiol. 2007 Dec;56(Pt 12):1581-1588
pubmed: 18033823
Int Endod J. 2019 Jul;52(7):1020-1027
pubmed: 30719720
Appl Environ Microbiol. 2019 Feb 20;85(5):
pubmed: 30578260
Front Microbiol. 2019 Feb 13;10:222
pubmed: 30814987

Auteurs

Jiajun Dong (J)

College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China.
Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan, China.

Luhan Liu (L)

College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China.
Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan, China.

Liying Chen (L)

College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China.
Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan, China.

Yuqiang Xiang (Y)

College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China.
Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan, China.

Yabin Wang (Y)

College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China.
Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan, China.

Youbao Zhao (Y)

College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China.
Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan, China.

Classifications MeSH