Light intensity-mediated auxin homeostasis in spikelets links carbohydrate metabolism enzymes with grain filling rate in rice.


Journal

Protoplasma
ISSN: 1615-6102
Titre abrégé: Protoplasma
Pays: Austria
ID NLM: 9806853

Informations de publication

Date de publication:
Jul 2023
Historique:
received: 24 11 2022
accepted: 13 02 2023
medline: 8 6 2023
pubmed: 28 2 2023
entrez: 27 2 2023
Statut: ppublish

Résumé

Low light (LL) stress during the grain-filling stage acutely impairs the quality and quantity of starch accumulation in rice grains. Here, we observed that LL-induced poor starch biosynthesis is modulated by auxin homeostasis, which regulates the activities of major carbohydrate metabolism enzymes such as starch synthase (SS) and ADP-glucose pyrophosphorylase (AGPase) in rice. Further, during the grain-filling period under LL, the starch/sucrose ratio increased in leaves but significantly decreased in the developing spikelets. This suggests poor sucrose biosynthesis in leaves and starch in the grains of the rice under LL. A lower grain starch was found to be correlated with the depleted AGPase and SS activities in the developing rice grains under LL. Further, under LL, the endogenous auxin (IAA) level in the spikelets was found to be synchronized with the expression of a heteromeric G protein gene, RGB1. Interestingly, under LL, the expression of OsYUC11 was significantly downregulated, which subsequently resulted in reduced IAA in the developing rice spikelets, followed by poor activation of grain-filling enzymes. This resulted in lowered grain starch accumulation, grain weight, panicle number, spikelet fertility, and eventually grain yield, which was notably higher in the LL-susceptible (GR4, IR8) than in the LL-tolerant (Purnendu, Swarnaprabha) rice genotypes. Therefore, we hypothesize that depletion in auxin biosynthesis under LL stress is associated with the downregulation of RBG1, which discourages the expression and activities of grain-filling enzymes, resulting in lower starch production, panicle formation, and grain yield in rice.

Identifiants

pubmed: 36847862
doi: 10.1007/s00709-023-01844-8
pii: 10.1007/s00709-023-01844-8
doi:

Substances chimiques

Starch 9005-25-8
Sucrose 57-50-1
Indoleacetic Acids 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1233-1251

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.

Références

Bradford MM (1976) A dye binding assay for protein. Anal Biochem 72(248):e54
Braun DM (2022) Phloem loading and unloading of sucrose: what a long, strange trip from source to sink. Annu Rev Plant Biol 73:553–584. https://doi.org/10.1146/annurev-arplant-070721-083240
doi: 10.1146/annurev-arplant-070721-083240 pubmed: 35171647
Cernusak LA (2020) Gas exchange and water-use efficiency in plant canopies. Plant Biol (stuttg) 22:52–67. https://doi.org/10.1111/plb.12939
doi: 10.1111/plb.12939 pubmed: 30428160
Chaturvedi AK, Bahuguna RN, Shah D, Pal M, Jagadish SVK (2017) High temperature stress during flowering and grain filling offsets beneficial impact of elevated CO
doi: 10.1038/s41598-017-07464-6 pubmed: 28811489 pmcid: 5557921
Chen H, Li QP, Zeng YL, Deng F, Ren WJ (2019) Effect of different shading materials on grain yield and quality of rice. Sci Rep 9(1):9992. https://doi.org/10.1038/s41598-019-46437-9
doi: 10.1038/s41598-019-46437-9 pubmed: 31292505 pmcid: 6620329
Chen G, Chen H, Shi K, Raza MA, Bawa G, Sun X, Pu T, Yong T, Liu W, Liu J, Du J, Yang F, Yang W, Wang X (2020) Heterogeneous light conditions reduce the assimilate translocation towards maize ears. Plants 9(8):987. https://doi.org/10.3390/plants9080987
doi: 10.3390/plants9080987 pubmed: 32759776 pmcid: 7465644
Chen Y, Teng Z, Yuan Y, Yi Z, Zheng Q, Yu H, Ye N (2022) Excessive nitrogen in field-grown rice suppresses grain filling of inferior spikelets by reducing the accumulation of cytokinin and auxin. Field Crop Res 283:108542
doi: 10.1016/j.fcr.2022.108542
Delrue B, Fontaine T, Routier F, Decq A, Wieruszeski JM, Van Den Koornhuyse N, Maddelein ML, Fournet B, Ball S (1992) Waxy Chlamydomonas reinhardtii: monocellular algal mutants defective in amylose biosynthesis and granule-bound starch synthase activity accumulate a structurally modified amylopectin. J Bacteriol 174(11):3612–3620. https://doi.org/10.1128/jb.174.11.3612-3620.1992
doi: 10.1128/jb.174.11.3612-3620.1992 pubmed: 1592815 pmcid: 206049
Deng N, Deng Z, Tang C, Liu C, Luo S, Chen T, Hu X (2021) Formation, structure and properties of the starch-polyphenol inclusion complex: a review. Trends Food Sci Technol 112:667–675. https://doi.org/10.1016/j.tifs.2021.04.032
doi: 10.1016/j.tifs.2021.04.032
Duan M, Sun SS (2005) Profiling the expression of genes controlling rice grain quality. Plant Mol Biol 59(1):165–178. https://doi.org/10.1007/s11103-004-7507-3
doi: 10.1007/s11103-004-7507-3 pubmed: 16217610
Dutta S, Tyagi W, Rai M (2017) Physiological and molecular response to low light intensity in rice: a review. Agric Rev 38(3):209–215. https://doi.org/10.18805/ag.v38i03.8980
doi: 10.18805/ag.v38i03.8980
Eliyahu E, Rog I, Inbal D, Danon A (2015) ACHT4-driven oxidation of APS1 attenuates starch synthesis under low light intensity in Arabidopsis plants. Proc Natl Acad Sci 112(41):12876–12881
doi: 10.1073/pnas.1515513112 pubmed: 26424450 pmcid: 4611610
Fan C, Wang G, Wang Y, Zhang R, Wang Y, Feng S, Luo K, Peng L (2019) Sucrose synthase enhances hull size and grain weight by regulating cell division and starch accumulation in transgenic rice. Int J Mol Sci 20(20):4971. https://doi.org/10.3390/ijms20204971
doi: 10.3390/ijms20204971 pubmed: 31600873 pmcid: 6829484
Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Annu Rev Plant Physiol 33(1):317–345. https://doi.org/10.1146/annurev.pp.33.060182.001533
doi: 10.1146/annurev.pp.33.060182.001533
Finley JW, Gauger MA, Fellers DA (1973) Condensed phosphates for precipitation of protein from gluten-washing effluent. Cereal Chem 50:465–474
Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7(2):179–188. https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
doi: 10.1111/j.1469-1809.1936.tb02137.x
Foyer C, Spencer C (1986) The relationship between phosphate status and photosynthesis in leaves: effects on intracellular orthophosphate distribution, photosynthesis and assimilate partitioning. Planta 167(3):369–375. https://doi.org/10.1007/BF00391341
doi: 10.1007/BF00391341 pubmed: 24240306
Fujita N, Miura S, Crofts N (2022) Effects of various allelic combinations of starch biosynthetic genes on the properties of endosperm starch in rice. Rice 15(1):24. https://doi.org/10.1186/s12284-022-00570-8
doi: 10.1186/s12284-022-00570-8 pubmed: 35438319 pmcid: 9018920
Gordon SA, Weber RP (1951) Colorimetric estimation of indoleacetic acid. Plant Physiol 26(1):192–195. https://doi.org/10.1104/pp.26.1.192
doi: 10.1104/pp.26.1.192 pubmed: 16654351 pmcid: 437633
Hendriks JH, Kolbe A, Gibon Y, Stitt M, Geigenberger P (2003) ADP-glucose pyrophosphorylase is activated by posttranslational redox-modification in response to light and to sugars in leaves of Arabidopsis and other plant species. Plant Physiol 133(2):838–849. https://doi.org/10.1104/pp.103.024513
doi: 10.1104/pp.103.024513 pubmed: 12972664 pmcid: 219057
Hikosaka K, Terashima I (1996) Nitrogen partitioning among photosynthetic components and its consequence in sun and shade plants. Funct Ecol 10(3):335–343. https://doi.org/10.2307/2390281
doi: 10.2307/2390281
Janardhan KV, Murty KS, Dash NB (1980) Effect of low light during ripening period on grain yield and translocation of assimilates in rice varieties. Indian J Plant Physiol 23:163–168
Jena UR, Bhattacharya S, Swain DK, Maiti MK (2021) Differential effect of elevated carbon dioxide on sucrose transport and accumulation in developing grains of three rice cultivars. Plant Gene 28:100337. https://doi.org/10.1016/j.plgene.2021.100337
doi: 10.1016/j.plgene.2021.100337
Kabir MR, Nonhebel HM, Backhouse D, Winter G (2021) Expression of key auxin biosynthesis genes correlates with auxin and starch content of developing wheat (Triticum aestivum) grains. Funct Plant Biol 48(8):802–814
doi: 10.1071/FP20319 pubmed: 33715766
Kang G, Liu G, Peng X, Wei L, Wang C, Zhu Y, Ma Y, Jiang Y, Guo T (2013) Increasing the starch content and grain weight of common wheat by overexpression of the cytosolic AGPase large subunit gene. Plant Physiol Biochem 73:93–98. https://doi.org/10.1016/j.plaphy.2013.09.003
doi: 10.1016/j.plaphy.2013.09.003 pubmed: 24080395
Keeling PL, Wood JR, Tyson RH, Bridges IG (1988) Starch biosynthesis in developing wheat grain: evidence against the direct involvement of triose phosphates in the metabolic pathway. Plant Physiol 87(2):311–319. https://doi.org/10.1104/pp.87.2.311
doi: 10.1104/pp.87.2.311 pubmed: 16666140 pmcid: 1054750
Kobata T, Palta JA, Turner NC (1992) Rate of development of postanthesis water deficits and grain filling of spring wheat. Crop Sci 32(5):1238–1242. https://doi.org/10.2135/cropsci1992.0011183X003200050035x
doi: 10.2135/cropsci1992.0011183X003200050035x
Kumar A, Panda D, Biswal M, Dey P, Behera L, Baig MJ, Nayak L, Ngangkham U, Sharma S (2019) Low light stress influences resistant starch content and glycemic index of rice (O sativa L). Starch-Stärke 71(5–6):1800216. https://doi.org/10.1002/star.201800216
doi: 10.1002/star.201800216
Kumar A, Panda D, Mohanty S, Biswal M, Dey P, Dash M, Sah RP, Kumar S, Baig MJ, Behera L (2020) Role of sedoheptulose-1 7 bisphosphatase in low light tolerance of rice (Oryza sativa L.). Physiol Mol Biol Plants 26(12):2465–2485. https://doi.org/10.1007/s12298-020-00905-z
doi: 10.1007/s12298-020-00905-z pubmed: 33424159 pmcid: 7772133
Lee SK, Eom JS, Voll LM, Prasch CM, Park YI, Hahn TR, Ha SH, An G, Jeon JS (2014) Analysis of a triose phosphate/phosphate translocator-deficient mutant reveals a limited capacity for starch synthesis in rice leaves. Mol Plant 7(11):1705–1708. https://doi.org/10.1093/mp/ssu082
doi: 10.1093/mp/ssu082 pubmed: 25038232
Leloir LF, De Fekete MA, Cardini CE (1961) Starch and oligosaccharide synthesis from uridine diphosphate glucose. J Biol Chem 236:636–641. https://doi.org/10.1016/S0021-9258(18)64280-2
doi: 10.1016/S0021-9258(18)64280-2 pubmed: 13760681
Lemoine R (2000) Sucrose transporters in plants: update on function and structure. Biochim Biophys Acta 1465(1–2):246–262. https://doi.org/10.1016/s0005-2736(00)00142-5
doi: 10.1016/s0005-2736(00)00142-5 pubmed: 10748258
Li N, Zhang S, Zhao Y, Li B, Zhang J (2011) Over-expression of AGPase genes enhances seed weight and starch content in transgenic maize. Planta 233(2):241–250. https://doi.org/10.1007/s00425-010-1296-5
doi: 10.1007/s00425-010-1296-5 pubmed: 20978801
Li J, Guan Y, Yuan L, Hou J, Wang C, Liu F, Yang Y, Lu Z, Chen G, Zhu S (2019) Effects of exogenous IAA in regulating photosynthetic capacity, carbohydrate metabolism and yield of Zizania latifolia. Sci Hortic 253:276–285. https://doi.org/10.1016/j.scienta.2019.04.058
doi: 10.1016/j.scienta.2019.04.058
Li Q, Deng F, Zeng Y, Li B, He C, Zhu Y, Zhou X, Zhang Z, Wang L, Tao Y, Zhang Y, Zhou W, Cheng H, Chen Y, Lei X, Ren W (2022a) Low light stress increases chalkiness by disturbing starch synthesis and grain filling of rice. Int J Mol Sci 23(16):9153. https://doi.org/10.3390/ijms23169153
doi: 10.3390/ijms23169153 pubmed: 36012414 pmcid: 9408977
Li Y, Yu C, Mo R, Zhu Z, Dong Z, Hu X, Deng W, Zhuang C (2022b) Screening and verification of photosynthesis and chloroplast-related genes in mulberry by comparative RNA-seq and virus-induced gene silencing. Int J Mol Sci 23(15):8620. https://doi.org/10.3390/ijms23158620
doi: 10.3390/ijms23158620 pubmed: 35955752 pmcid: 9368790
Liu J, Zhao Q, Zhou L, Cao Z, Shi C, Cheng F (2017) Influence of environmental temperature during grain filling period on granule size distribution of rice starch and its relation to gelatinization properties. J Cereal Sci 76:42–55. https://doi.org/10.1016/j.jcs.2017.05.004
doi: 10.1016/j.jcs.2017.05.004
Liu K, Yang R, Lu J, Wang X, Lu B, Tian X, Zhang Y (2019) Radiation use efficiency and source-sink changes of super hybrid rice under shade stress during grain-filling stage. Agron J 111(4):1788–1798. https://doi.org/10.2134/agronj2018.10.0662
doi: 10.2134/agronj2018.10.0662
Ma L, Zheng G, Ying Q, Hancock S, Ju W, Yu D (2021) Characterizing the three-dimensional spatiotemporal variation of forest photosynthetically active radiation using terrestrial laser scanning data. Agric For Meteorol 301–302:108346. https://doi.org/10.1016/j.agrformet.2021.108346
doi: 10.1016/j.agrformet.2021.108346
MacNeill G (2020) Post-translational regulation of starch branching enzyme 2.2 from Arabidopsis thaliana. Doctoral dissertation, The University of Guelph, Canada: 101–111. https://hdl.handle.net/10214/23748
Mao H, Shengyuan S, Yao J, Chongrong W, Yu S, Xu C, Li X, Zhang Q (2010) Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci 107(45):19579–19584. https://doi.org/10.1073/pnas.1014419107
doi: 10.1073/pnas.1014419107 pubmed: 20974950 pmcid: 2984220
Mavrevski R, Traykov M, Trenchev I, Trencheva M (2018) Approaches to modeling of biological experimental data with GraphPad Prism software. WSEAS Trans Syst Control 13:242–247
McClain AM, Sharkey TD (2019) Triose phosphate utilization and beyond: from photosynthesis to end product synthesis. J Exp Bot 70(6):1755–1766. https://doi.org/10.1093/jxb/erz058
doi: 10.1093/jxb/erz058 pubmed: 30868155 pmcid: 6939825
Mishra BS, Sharma M, Laxmi A (2022) Role of sugar and auxin crosstalk in plant growth and development. Physiol Plant 174(1):e13546. https://doi.org/10.1111/ppl.13546
doi: 10.1111/ppl.13546 pubmed: 34480799
Miyazawa Y, Sakai A, Miyagishima S, Takano H, Kawano S, Kuroiwa T (1999) Auxin and cytokinin have opposite effects on amyloplast development and the expression of starch synthesis genes in cultured bright yellow-2 tobacco cells. Plant Physiol 121(2):461–469. https://doi.org/10.1104/pp.121.2.461
doi: 10.1104/pp.121.2.461 pubmed: 10517837 pmcid: 59408
Murchie EH, Pinto M, Horton P (2009) Agriculture and the new challenges for photosynthesis research. New Phytol 181(3):532–552. https://doi.org/10.1111/j.1469-8137.2008.02705.x
doi: 10.1111/j.1469-8137.2008.02705.x pubmed: 19140947
Murty KS, Sahu G (1987) Impact of low-light stress on growth and yield of rice. In: Weather and Rice: Proceedings of the International Workshop on the Impact of Weather Parameters on Growth and Yield of Rice. Manila, Philippines: International Rice Research Institute: 93–101
Murty PSS, Murty KS (1982) Spikelet sterility in relation to nitrogen and carbohydrate contents in rice. Indian J Plant Physiol 25:40–48
Oiestad AJ, Martin JM, Giroux MJ (2019) Yield increases resulting from AGPase overexpression in rice are reliant on plant nutritional status. Plant Growth Regul 89(2):179–190. https://doi.org/10.1007/s10725-019-00525-y
doi: 10.1007/s10725-019-00525-y
Panda D, Biswal M, Behera L, Baig MJ, Dey P, Nayak L, Sharma S, Samantaray S, Ngangkham U, Kumar A (2019) Impact of low light stress on physiological biochemical and agronomic attributes of rice. J Pharmacogn Phytochem 8(1):1814–1821
Panda D, Mohanty S, Das S, Sah RP, Kumar A, Behera L, Baig MJ, Tripathy BC (2022) The role of phytochrome-mediated gibberellic acid signaling in the modulation of seed germination under low light stress in rice (O. sativa L.). Physiol Mol Biol Plants 28(3):585–605. https://doi.org/10.1007/s12298-022-01167-7
doi: 10.1007/s12298-022-01167-7 pubmed: 35465204 pmcid: 8986944
Panda D, Dash G K, Mohanty S, Sekhar S, Roy A, Tudu C, Roy A, Behera L, Tripathy B C, Baig, M J (2022b) Phytochrome A mediated modulation of photosynthesis, development and yield in rice (Oryza sativa L.) in fluctuating light environment. Environ Exp Botan 105183. https://doi.org/10.1016/j.envexpbot.2022.105183
Panigrahi R, Kariali E, Panda BB, Lafarge T, Mohapatra PK (2019) Controlling the trade-off between spikelet number and grain filling: the hierarchy of starch synthesis in spikelets of rice panicle in relation to hormone dynamics. Funct Plant Biol 46(6):507–523. https://doi.org/10.1071/FP18153
doi: 10.1071/FP18153 pubmed: 30961785
Prathap V, Ali K, Singh A, Vishwakarma C, Krishnan V, Chinnusamy V, Tyagi A (2019) Starch accumulation in rice grains subjected to drought during grain filling stage. Plant Physiol Biochem 142:440–451. https://doi.org/10.1016/j.plaphy.2019.07.027
doi: 10.1016/j.plaphy.2019.07.027
Preiss J (1982) Regulation of the biosynthesis and degradation of starch. Annu Rev Plant Physiol 33(1):431–454. https://doi.org/10.1146/annurev.pp.33.060182.002243
doi: 10.1146/annurev.pp.33.060182.002243
Preiss J, Sivak MN (1998) Biochemistry, molecular biology and regulation of starch synthesis. Genet Eng 177–223. https://doi.org/10.1007/978-1-4899-1739-3_10
Ren WJ, Yang WY, Xu JW, Fan GQ, Wang LY, Guan H (2002) Impact of low-light stress on leaves characteristics of rice after heading. J Sichuan Agric Univ 20(3):205–208. https://doi.org/10.1016/S1672-6308(13)60192-4
doi: 10.1016/S1672-6308(13)60192-4
Restrepo H, Garcés G (2013) Evaluation of low light intensity at three phenological stages in the agronomic and physiological responses of two rice (Oryza sativa L.) cultivars. Agron Colomb 31(2):195–200
Sagun JV, Badger MR, Chow WS, Ghannoum O (2021) Mehler reaction plays a role in C
doi: 10.1007/s11120-021-00819-1 pubmed: 33534052
Sajilata MG, Singhal RS, Kulkarni PR (2006) Resistant starch—a review. Compr Rev Food Sci Food Saf 5(1):1–17. https://doi.org/10.1111/j.1541-4337.2006.tb00076.x
doi: 10.1111/j.1541-4337.2006.tb00076.x pubmed: 33412740
Sekhar S, Panda D, Kumar J, Mohanty N, Biswal M, Baig MJ, Kumar A, Umakanta N, Samantaray S, Pradhan SK, Shaw BP, Swain P, Behera L (2019) Comparative transcriptome profiling of low light tolerant and sensitive rice varieties induced by low light stress at active tillering stage. Sci Rep 9(1):1–14. https://doi.org/10.1038/s41598-019-42170-5
doi: 10.1038/s41598-019-42170-5
Singh G, Dahal B (2022) Effect of applied phosphorus on soil environment and agricultural productivity: a review. Pharma Innov J 11(5):682–688
Singh VJ, Vinod KK, Krishnan SG, Singh AK (2021) Rice adaptation to climate change: opportunities and priorities in molecular breeding. Molecular breeding for rice abiotic stress tolerance and nutritional quality. pp 650–700. https://doi.org/10.1002/9781119633174.ch1
Song S, He A, Zhao T, Yin Q, Mu Y, Wang Y, Liu H, Nie L, Peng S (2022) Effects of shading at different growth stages with various shading intensities on the grain yield and anthocyanin content of colored rice (Oryza sativa L.). Field Crops Res 283:108555. https://doi.org/10.1016/j.fcr.2022.108555
doi: 10.1016/j.fcr.2022.108555
Stein O, Granot D (2019) An overview of sucrose synthases in plants. Front Plant Sci 10:95. https://doi.org/10.3389/fpls.2019.00095
doi: 10.3389/fpls.2019.00095 pubmed: 30800137 pmcid: 6375876
Stitt M, Huber S, Kerr P (1987) 6-Control of photosynthetic sucrose formation. In: Photosynthesis, Academic Press pp 327–409. https://doi.org/10.1016/B978-0-12-675410-0.50012-9
Stitt M, Zeeman SC (2012) Starch turnover: pathways regulation and role in growth. Curr Opin Plant Biol 15(3):282–292. https://doi.org/10.1016/j.pbi.2012.03.016
Sultan SE (2000) Phenotypic plasticity for plant development function and life history. Trends Plant Sci 5(12):537–542. https://doi.org/10.1016/S1360-1385(00)01797-0
doi: 10.1016/S1360-1385(00)01797-0 pubmed: 11120476
Sun S, Wang L, Mao H, Shao L, Li X, Xiao J, Ouyang Y, Zhang Q (2018) A G-protein pathway determines grain size in rice. Nat Commun 9(1):851. https://doi.org/10.1038/s41467-018-03141-y
doi: 10.1038/s41467-018-03141-y pubmed: 29487318 pmcid: 5829277
Sun Z, Geng W, Ren B, Zhao B, Liu P, Zhang J (2022) Low photosynthetic rate under low light stress inhibited sucrose distribution and transportation to grain. BioRxiv. https://doi.org/10.1101/2022.08.02.502494
doi: 10.1101/2022.08.02.502494 pubmed: 36561175 pmcid: 9774204
Tang W, Guo H, Baskin CC, Xiong W, Yang C, Li Z, Song H, Wang T, Yin J, Wu X, Miao F, Zhong S, Tao Q, Zhao Y, Sun J (2022) Effect of light intensity on morphology, photosynthesis and carbon metabolism of alfalfa (Medicago Sativa) seedlings. Plants 11(13):1688. https://doi.org/10.3390/plants11131688
doi: 10.3390/plants11131688 pubmed: 35807640 pmcid: 9269066
Tyagi A, Chandra A (2006) Isolation of stress responsive Psb A gene from rice (Oryza sativa L.) using differential display. Indian J Biochem Biophys 43(4):244–246
pubmed: 17133769
Urano D, Jones AM (2014) Heterotrimeric G protein–coupled signaling in plants. Annu Rev Plant Biol 65:365–384. https://doi.org/10.1146/annurev-arplant-050213-040133
doi: 10.1146/annurev-arplant-050213-040133 pubmed: 24313842
Utsunomiya Y, Samejima C, Takayanagi Y, Izawa Y, Yoshida T, Sawada Y, Fujisawa Y, Kato H, Iwasaki Y (2011) Suppression of the rice heterotrimeric G protein β-subunit gene RGB1, causes dwarfism and browning of internodes and lamina joint regions. The Plant J 67(5):907–916. https://doi.org/10.1111/j.1365-313X.2011.04643.x
doi: 10.1111/j.1365-313X.2011.04643.x pubmed: 21585570
Venkateswarlu B, Srinivasan TE (1978) Influence of low light intensity on growth and productivity in relation to population pressure and varietal reaction in irrigated rice (Oryza sativa L.). Indian J Plant Physiol 21(2):162–170
Wang F, Cheng F, Zhang G (2006) The relationship between grain filling and hormone content as affected by genotype and source–sink relation. Plant Growth Regul 49(1):1–8. https://doi.org/10.1007/s10725-006-0017-3
doi: 10.1007/s10725-006-0017-3
Yang B, Tang J, Yu Z, Khare T, Srivastav A, Datir S, Kumar V (2019) Light stress responses and prospects for engineering light stress tolerance in crop plants. J Plant Growth Regul 38(4):1489–1506. https://doi.org/10.1007/s00344-019-09951-8
doi: 10.1007/s00344-019-09951-8
Yoshida S, Hara T (1977) Effects of air temperature and light on grain filling of an indica and a japonica rice (Oryza sativa L.) under controlled environmental conditions. Soil Sci Plant Nutr 23(1):93–107. https://doi.org/10.1080/00380768.1977.10433026
doi: 10.1080/00380768.1977.10433026
Zhang R, Tielbörger K (2020) Density-dependence tips the change of plant–plant interactions under environmental stress. Nat Commun 11(1):2532. https://doi.org/10.1038/s41467-020-16286-6
doi: 10.1038/s41467-020-16286-6 pubmed: 32439842 pmcid: 7242385
Zhang D, Zhang M, Liang J (2021) RGB1 regulates grain development and starch accumulation through its effect on OsYUC11-mediated auxin biosynthesis in rice endosperm cells. Front Plant Sci 12:585174. https://doi.org/10.3389/fpls.2021.585174
doi: 10.3389/fpls.2021.585174 pubmed: 33868323 pmcid: 8045708
Zhao Z, Wang C, Yu X, Tian Y, Wang W, Zhang Y et al (2022) Auxin regulates source-sink carbohydrate partitioning and reproductive organ development in rice. Proc Natl Acad Sci 119(36):e2121671119
doi: 10.1073/pnas.2121671119 pubmed: 36037381 pmcid: 9457257

Auteurs

Darshan Panda (D)

Crop Physiology and Biochemistry Division, ICAR-National Rice Research Institute, Cuttack, 753006, Odisha, India.

Soumya Mohanty (S)

Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, 753006, Odisha, India.

Swagatika Das (S)

Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, 753006, Odisha, India.

Baneeta Mishra (B)

Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, 753006, Odisha, India.

Mirza Jaynul Baig (MJ)

Crop Physiology and Biochemistry Division, ICAR-National Rice Research Institute, Cuttack, 753006, Odisha, India.

Lambodar Behera (L)

Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, 753006, Odisha, India. lambodarjamujhadi@gmail.com.

Articles similaires

Fragaria Light Plant Leaves Osmosis Stress, Physiological

A key role for P2RX5 in brown adipocyte differentiation and energy homeostasis.

Maria Razzoli, Seth McGonigle, Bhavani Shankar Sahu et al.
1.00
Animals Adipocytes, Brown Mice Cell Differentiation Male
1.00
Oryza Agricultural Irrigation Potassium Sodium Soil
Glycine max Photoperiod Ubiquitin-Protein Ligases Flowers Gene Expression Regulation, Plant

Classifications MeSH