Challenges and optimal strategies of CAR T therapy for hematological malignancies.
Journal
Chinese medical journal
ISSN: 2542-5641
Titre abrégé: Chin Med J (Engl)
Pays: China
ID NLM: 7513795
Informations de publication
Date de publication:
05 Feb 2023
05 Feb 2023
Historique:
medline:
31
3
2023
pubmed:
28
2
2023
entrez:
27
2
2023
Statut:
epublish
Résumé
Remarkable improvement relative to traditional approaches in the treatment of hematological malignancies by chimeric antigen receptor (CAR) T-cell therapy has promoted sequential approvals of eight commercial CAR T products within last 5 years. Although CAR T cells' productization is now rapidly boosting their extensive clinical application in real-world patients, the limitation of their clinical efficacy and related toxicities inspire further optimization of CAR structure and substantial development of innovative trials in various scenarios. Herein, we first summarized the current status and major progress in CAR T therapy for hematological malignancies, then described crucial factors which possibly compromise the clinical efficacies of CAR T cells, such as CAR T cell exhaustion and loss of antigen, and finally, we discussed the potential optimization strategies to tackle the challenges in the field of CAR T therapy.
Identifiants
pubmed: 36848181
doi: 10.1097/CM9.0000000000002476
pii: 00029330-202302050-00002
pmc: PMC10106177
doi:
Substances chimiques
Receptors, Chimeric Antigen
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
269-279Informations de copyright
Copyright © 2023 The Chinese Medical Association, produced by Wolters Kluwer, Inc. under the CC-BY-NC-ND license.
Références
Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci U S A 1989; 86:10024–10028. doi: 10.1073/pnas.86.24.10024.
doi: 10.1073/pnas.86.24.10024
Garrido F, Aptsiauri N. Cancer immune escape: MHC expression in primary tumours versus metastases. Immunology 2019; 158:255–266. doi: 10.1111/imm.13114.
doi: 10.1111/imm.13114
Fangazio M, Ladewig E, Gomez K, Garcia-Ibanez L, Kumar R, Teruya-Feldstein J, et al. Genetic mechanisms of HLA-I loss and immune escape in diffuse large B cell lymphoma. Proc Natl Acad Sci U S A 2021; 118:e2104504118doi: 10.1073/pnas.2104504118.
doi: 10.1073/pnas.2104504118
Kershaw MH, Westwood JA, Parker LL, Wang G, Eshhar Z, Mavroukakis SA, et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res 2006; 12:6106–6115. doi: 10.1158/1078-0432.CCR-06-1183.
doi: 10.1158/1078-0432.CCR-06-1183
Lamers CH, Sleijfer S, Vulto AG, Kruit WH, Kliffen M, Debets R, et al. Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol 2006; 24:e20–e22. doi: 10.1200/JCO.2006.05.9964.
doi: 10.1200/JCO.2006.05.9964
Savoldo B, Ramos CA, Liu E, Mims MP, Keating MJ, Carrum G, et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J Clin Invest 2011; 121:1822–1826. doi: 10.1172/JCI46110.
doi: 10.1172/JCI46110
Cappell KM, Kochenderfer JN. A comparison of chimeric antigen receptors containing CD28 versus 4-1BB costimulatory domains. Nat Rev Clin Oncol 2021; 18:715–727. doi: 10.1038/s41571-021-00530-z.
doi: 10.1038/s41571-021-00530-z
Kowolik CM, Topp MS, Gonzalez S, Pfeiffer T, Olivares S, Gonzalez N, et al. CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells. Cancer Res 2006; 66:10995–11004. doi: 10.1158/0008-5472.CAN-06-0160.
doi: 10.1158/0008-5472.CAN-06-0160
Long AH, Haso WM, Shern JF, Wanhainen KM, Murgai M, Ingaramo M, et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med 2015; 21:581–590. doi: 10.1038/nm.3838.
doi: 10.1038/nm.3838
Louis CU, Savoldo B, Dotti G, Pule M, Yvon E, Myers GD, et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood 2011; 118:6050–6056. doi: 10.1182/blood-2011-05-354449.
doi: 10.1182/blood-2011-05-354449
Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 2011; 365:725–733. doi: 10.1056/NEJMoa1103849.
doi: 10.1056/NEJMoa1103849
Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 2013; 368:1509–1518. doi: 10.1056/NEJMoa1215134.
doi: 10.1056/NEJMoa1215134
Tong C, Zhang Y, Liu Y, Ji X, Zhang W, Guo Y, et al. Optimized tandem CD19/CD20 CAR-engineered T cells in refractory/relapsed B cell lymphoma. Blood 2020; 136:1632–1644. doi: 10.1182/blood.2020005278.
doi: 10.1182/blood.2020005278
Schuster SJ, Bishop MR, Tam CS, Waller EK, Borchmann P, McGuirk JP, et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med 2019; 380:45–56. doi: 10.1056/NEJMoa1804980.
doi: 10.1056/NEJMoa1804980
Zhao WH, Liu J, Wang BY, Chen YX, Cao XM, Yang Y, et al. A phase 1, open-label study of LCAR-B38M, a chimeric antigen receptor T cell therapy directed against B cell maturation antigen, in patients with relapsed or refractory multiple myeloma. J Hematol Oncol 2018; 11:141doi: 10.1186/s13045-018-0681-6.
doi: 10.1186/s13045-018-0681-6
Nie Y, Lu W, Chen D, Tu H, Guo Z, Zhou X, et al. Mechanisms underlying CD19-positive ALL relapse after anti-CD19 CAR T cell therapy and associated strategies. Biomarker Res 2020; 8:18doi: 10.1186/s40364-020-00197-1.
doi: 10.1186/s40364-020-00197-1
Wang L. Clinical determinants of relapse following CAR-T therapy for hematologic malignancies: coupling active strategies to overcome therapeutic limitations. Curr Res Transl Med 2022; 70:103320doi: 10.1016/j.retram.2021.103320.
doi: 10.1016/j.retram.2021.103320
Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J 2021; 11:69doi: 10.1038/s41408-021-00459-7.
doi: 10.1038/s41408-021-00459-7
Minton K. Overcoming CAR T cell exhaustion. Nat Rev Immunol 2020; 20:72–73. doi: 10.1038/s41577-019-0265-x.
doi: 10.1038/s41577-019-0265-x
Delgoffe GM, Xu C, Mackall CL, Green MR, Gottschalk S, Speiser DE, et al. The role of exhaustion in CAR T cell therapy. Cancer Cell 2021; 39:885–888. doi: 10.1016/j.ccell.2021.06.012.
doi: 10.1016/j.ccell.2021.06.012
Kasakovski D, Xu L, Li Y. T cell senescence and CAR-T cell exhaustion in hematological malignancies. J Hematol Oncol 2018; 11:91doi: 10.1186/s13045-018-0629-x.
doi: 10.1186/s13045-018-0629-x
Singh N, Lee YG, Shestova O, Ravikumar P, Hayer KE, Hong SJ, et al. Impaired death receptor signaling in leukemia causes antigen-independent resistance by inducing CAR T-cell dysfunction. Cancer Discov 2020; 10:552–567. doi: 10.1158/2159-8290.CD-19-0813.
doi: 10.1158/2159-8290.CD-19-0813
Peng W, Chen JQ, Liu C, Malu S, Creasy C, Tetzlaff MT, et al. Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov 2016; 6:202–216. doi: 10.1158/2159-8290.CD-15-0283.
doi: 10.1158/2159-8290.CD-15-0283
Jain MD, Zhao H, Wang X, Atkins R, Menges M, Reid K, et al. Tumor interferon signaling and suppressive myeloid cells are associated with CAR T-cell failure in large B-cell lymphoma. Blood 2021; 137:2621–2633. doi: 10.1182/blood.2020007445.
doi: 10.1182/blood.2020007445
Yan X, Chen D, Ma X, Wang Y, Guo Y, Wei J, et al. CD58 loss in tumor cells confers functional impairment of CAR T cells. Blood Adv 2022; 6:5844–5856. doi: 10.1182/bloodadvances.2022007891.
doi: 10.1182/bloodadvances.2022007891
Majzner RG, Frank MJ, Mount C, Tousley A, Kurtz DM, Sworder B, et al. CD58 aberrations limit durable responses to CD19 CAR in large B cell lymphoma patients treated with axicabtagene ciloleucel but can be overcome through novel CAR engineering. Blood 2020; 136:53–54. doi: 10.1182/blood-2020-139605.
doi: 10.1182/blood-2020-139605
Wang K, Wei G, Liu D. CD19: a biomarker for B cell development, lymphoma diagnosis and therapy. Exp Hematol Oncol 2012; 1:36doi: 10.1186/2162-3619-1-36.
doi: 10.1186/2162-3619-1-36
Blüml S, McKeever K, Ettinger R, Smolen J, Herbst R. B-cell targeted therapeutics in clinical development. Arthritis Res Ther 2013; 15:S4doi: 10.1186/ar3906.
doi: 10.1186/ar3906
Locke FL, Ghobadi A, Jacobson CA, Miklos DB, Lekakis LJ, Oluwole OO, et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1-2 trial. Lancet Oncol 2019; 20:31–42. doi: 10.1016/S1470-2045(18)30864-7.
doi: 10.1016/S1470-2045(18)30864-7
Schuster SJ, Bishop MR, Tam C, Borchmann P, Jaeger U, Waller EK, et al. Sustained disease control for adult patients with relapsed or refractory diffuse large B-cell lymphoma: an updated analysis of Juliet, a global pivotal phase 2 trial of tisagenlecleucel. Blood 2018; 132:1684doi: 10.1182/blood-2018-99-115252.
doi: 10.1182/blood-2018-99-115252
Westin JR, Tam CS, Borchmann P, Jaeger U, McGuirk JP, Holte H, et al. Correlative analyses of patient and clinical characteristics associated with efficacy in tisagenlecleucel-treated relapsed/refractory diffuse large B-cell lymphoma patients in the Juliet trial. Blood 2019; 134:4103doi: 10.1182/blood-2019-129107.
doi: 10.1182/blood-2019-129107
Abramson JS, Palomba ML, Gordon LI, Lunning MA, Wang M, Arnason J, et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet 2020; 396:839–852. doi: 10.1016/S0140-6736(20)31366-0.
doi: 10.1016/S0140-6736(20)31366-0
Zhang WY, Wang Y, Guo YL, Dai HR, Yang QM, Zhang YJ, et al. Treatment of CD20-directed chimeric antigen receptor-modified T cells in patients with relapsed or refractory B-cell non-hodgkin lymphoma: an early phase IIa trial report. Signal Transduct Target Ther 2016; 1:16002doi: 10.1038/sigtrans.2016.2.
doi: 10.1038/sigtrans.2016.2
Zhang WY, Liu Y, Wang Y, Wang CM, Yang QM, Zhu HL, et al. Long-term safety and efficacy of CART-20 cells in patients with refractory or relapsed B-cell non-hodgkin lymphoma: 5-years follow-up results of the phase I and IIa trials. Signal Transduct Target Ther 2017; 2:17054doi: 10.1038/sigtrans.2017.54.
doi: 10.1038/sigtrans.2017.54
Tan Y, Cai H, Li C, Deng B, Song W, Ling Z, et al. A novel full-human CD22-CAR T cell therapy with potent activity against CD22 low B-ALL. Blood Cancer J 2021; 11:71doi: 10.1038/s41408-021-00465-9.
doi: 10.1038/s41408-021-00465-9
Pan J, Niu Q, Deng B, Liu S, Wu T, Gao Z, et al. CD22 CAR T-cell therapy in refractory or relapsed B acute lymphoblastic leukemia. Leukemia 2019; 33:2854–2866. doi: 10.1038/s41375-019-0488-7.
doi: 10.1038/s41375-019-0488-7
Zhu H, Deng H, Mu J, Lyu C, Jiang Y, Deng Q. Anti-CD22 CAR-T cell therapy as a salvage treatment in B cell malignancies refractory or relapsed after anti-CD19 CAR-T therapy. Onco Targets Ther 2021; 14:4023–4037. doi: 10.2147/OTT.S312904.
doi: 10.2147/OTT.S312904
Baird JH, Frank MJ, Craig J, Patel S, Spiegel JY, Sahaf B, et al. CD22-directed CAR T-cell therapy induces complete remissions in CD19-directed CAR-refractory large B-cell lymphoma. Blood 2021; 137:2321–2325. doi: 10.1182/blood.2020009432.
doi: 10.1182/blood.2020009432
Anagnostou T, Riaz IB, Hashmi SK, Murad MH, Kenderian SS. Anti-CD19 chimeric antigen receptor T-cell therapy in acute lymphocytic leukaemia: a systematic review and meta-analysis. Lancet Haematol 2020; 7:e816–e826. doi: 10.1016/S2352-3026(20)30277-5.
doi: 10.1016/S2352-3026(20)30277-5
Tan Y, Pan J, Deng B, Ling Z, Song W, Xu J, et al. Toxicity and effectiveness of CD19 CAR T therapy in children with high-burden central nervous system refractory B-ALL. Cancer Immunol Immunother 2021; 70:1979–1993. doi: 10.1007/s00262-020-02829-9.
doi: 10.1007/s00262-020-02829-9
Baroni ML, Sanchez Martinez D, Gutierrez Aguera F, Roca Ho H, Castella M, Zanetti SR, et al. 41BB-based and CD28-based CD123-redirected T-cells ablate human normal hematopoiesis in vivo. J Immunother Cancer 2020; 8:e000845doi: 10.1136/jitc-2020-000845.
doi: 10.1136/jitc-2020-000845
Nguyen DH, Ball ED, Varki A. Myeloid precursors and acute myeloid leukemia cells express multiple CD33-related Siglecs. Exp Hematol 2006; 34:728–735. doi: 10.1016/j.exphem.2006.03.003.
doi: 10.1016/j.exphem.2006.03.003
Ritchie DS, Neeson PJ, Khot A, Peinert S, Tai T, Tainton K, et al. Persistence and efficacy of second generation CAR T cell against the LeY antigen in acute myeloid leukemia. Mol Ther 2013; 21:2122–2129. doi: 10.1038/mt.2013.154.
doi: 10.1038/mt.2013.154
Wang QS, Wang Y, Lv HY, Han QW, Fan H, Guo B, et al. Treatment of CD33-directed chimeric antigen receptor-modified T cells in one patient with relapsed and refractory acute myeloid leukemia. Mol Ther 2015; 23:184–191. doi: 10.1038/mt.2014.164.
doi: 10.1038/mt.2014.164
Fiorenza S, Turtle CJ. CAR-T cell therapy for acute myeloid leukemia: preclinical rationale, current clinical progress, and barriers to success. BioDrugs 2021; 35:281–302. doi: 10.1007/s40259-021-00477-8.
doi: 10.1007/s40259-021-00477-8
Zhang H, Wang P, Li Z, He Y, Gan W, Jiang H. Anti-CLL1 chimeric antigen receptor T-cell therapy in children with relapsed/refractory acute myeloid leukemia. Clin Cancer Res 2021; 27:3549–3555. doi: 10.1158/1078-0432.CCR-20-4543.
doi: 10.1158/1078-0432.CCR-20-4543
Ma H, Padmanabhan IS, Parmar S, Gong Y. Targeting CLL-1 for acute myeloid leukemia therapy. J Hematol Oncol 2019; 12:41doi: 10.1186/s13045-019-0726-5.
doi: 10.1186/s13045-019-0726-5
Jin X, Zhang M, Sun R, Lyu H, Xiao X, Zhang X, et al. First-in-human phase I study of CLL-1 CAR-T cells in adults with relapsed/refractory acute myeloid leukemia. J Hematol Oncol 2022; 15:88doi: 10.1186/s13045-022-01308-1.
doi: 10.1186/s13045-022-01308-1
Jetani H, Navarro-Bailón A, Maucher M, Frenz S, Verbruggen C, Yeguas A, et al. Siglec-6 is a novel target for CAR T-cell therapy in acute myeloid leukemia. Blood 2021; 138:1830–1842. doi: 10.1182/blood.2020009192.
doi: 10.1182/blood.2020009192
Wang CM, Wu ZQ, Wang Y, Guo YL, Dai HR, Wang XH, et al. Autologous T cells expressing CD30 chimeric antigen receptors for relapsed or refractory hodgkin lymphoma: an open-label phase I trial. Clin Cancer Res 2017; 23:1156–1166. doi: 10.1158/1078-0432.CCR-16-1365.
doi: 10.1158/1078-0432.CCR-16-1365
Ramos CA, Grover NS, Beaven AW, Lulla PD, Wu MF, Ivanova A, et al. Anti-CD30 CAR-T cell therapy in relapsed and refractory hodgkin lymphoma. J Clin Oncol 2020; 38:3794–3804. doi: 10.1200/JCO.20.01342.
doi: 10.1200/JCO.20.01342
Grover NSIA, Moore DT, Et AL. CD30-directed CAR-T cells co-expressing CCR4 in relapsed/refractory hodgkin lymphoma and CD30+ cutaneous T cell lymphoma. Transplant Cell Ther 2022; 28: (3 Suppl): S54–S55. doi: 10.1016/S2666-6367(22)00225-1.
doi: 10.1016/S2666-6367(22)00225-1
Pan J, Tan Y, Wang G, Deng B, Ling Z, Song W, et al. Donor-derived CD7 chimeric antigen receptor T cells for T-cell acute lymphoblastic leukemia: first-in-human, phase I trial. J Clin Oncol 2021; 39:3340–3351. doi: 10.1200/JCO.21.00389.
doi: 10.1200/JCO.21.00389
Lu P, Liu Y, Yang J, Zhang X, Yang X, Wang H, et al. Naturally selected CD7 CAR-T therapy without genetic manipulations for T-ALL/LBL: first-in-human phase 1 clinical trial. Blood 2022; 140:321–334. doi: 10.1182/blood.2021014498.
doi: 10.1182/blood.2021014498
Sharma P, Kanapuru B, George B, Lin X, Xu Z, Bryan WW, et al. FDA approval summary: idecabtagene vicleucel for relapsed or refractory multiple myeloma. Clin Cancer Res 2022; 28:1759–1764. doi: 10.1158/1078-0432.CCR-21-3803.
doi: 10.1158/1078-0432.CCR-21-3803
Munshi NC, Anderson LD Jr, Shah N, Madduri D, Berdeja J, Lonial S, et al. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N Engl J Med 2021; 384:705–716. doi: 10.1056/NEJMoa2024850.
doi: 10.1056/NEJMoa2024850
Berdeja JG, Madduri D, Usmani SZ, Jakubowiak A, Agha M, Cohen AD, et al. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study. Lancet 2021; 398:314–324. doi: 10.1016/S0140-6736(21)00933-8.
doi: 10.1016/S0140-6736(21)00933-8
Martin T, Usmani SZ, Berdeja JG, Agha M, Cohen AD, Hari P, et al. Ciltacabtagene autoleucel, an anti-B-cell maturation antigen chimeric antigen receptor T-cell therapy, for relapsed/refractory multiple myeloma: CARTITUDE-1 2-year follow-up. J Clin Oncol 2023; 41:1265–1274. doi: 10.1200/JCO.22.00842.
doi: 10.1200/JCO.22.00842
Zhao WH, Wang BY, Chen LJ, Fu WJ, Xu J, Liu J, et al. Four-year follow-up of LCAR-B38M in relapsed or refractory multiple myeloma: a phase 1, single-arm, open-label, multicenter study in China (LEGEND-2). J Hematol Oncol 2022; 15:86doi: 10.1186/s13045-022-01301-8.
doi: 10.1186/s13045-022-01301-8
Zhang H, Zhao P, Huang H. Engineering better chimeric antigen receptor T cells. Exp Hematol Oncol 2020; 9:34doi: 10.1186/s40164-020-00190-2.
doi: 10.1186/s40164-020-00190-2
Dufva O, Koski J, Maliniemi P, Ianevski A, Klievink J, Leitner J, et al. Integrated drug profiling and CRISPR screening identify essential pathways for CAR T-cell cytotoxicity. Blood 2020; 135:597–609. doi: 10.1182/blood.2019002121.
doi: 10.1182/blood.2019002121
Yan X, Chen D, Wang Y, Guo Y, Tong C, Wei J, et al. Identification of NOXA as a pivotal regulator of resistance to CAR T-cell therapy in B-cell malignancies. Signal Transduct Target Ther 2022; 7:98doi: 10.1038/s41392-022-00915-1.
doi: 10.1038/s41392-022-00915-1
Heard A, Landmann JH, Hansen AR, Papadopolou A, Hsu YS, Selli ME, et al. Antigen glycosylation regulates efficacy of CAR T cells targeting CD19. Nat Commun 2022; 13:3367doi: 10.1038/s41467-022-31035-7.
doi: 10.1038/s41467-022-31035-7
Wei J, Han X, Bo J, Han W. Target selection for CAR-T therapy. J Hematol Oncol 2019; 12:62doi: 10.1186/s13045-019-0758-x.
doi: 10.1186/s13045-019-0758-x
Orlando EJ, Han X, Tribouley C, Wood PA, Leary RJ, Riester M, et al. Genetic mechanisms of target antigen loss in CAR19 therapy of acute lymphoblastic leukemia. Nat Med 2018; 24:1504–1506. doi: 10.1038/s41591-018-0146-z.
doi: 10.1038/s41591-018-0146-z
Fry TJ, Shah NN, Orentas RJ, Stetler-Stevenson M, Yuan CM, Ramakrishna S, et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med 2018; 24:20–28. doi: 10.1038/nm.4441.
doi: 10.1038/nm.4441
Rabilloud T, Potier D, Pankaew S, Nozais M, Loosveld M, Payet-Bornet D. Single-cell profiling identifies pre-existing CD19-negative subclones in a B-ALL patient with CD19-negative relapse after CAR-T therapy. Nat Commun 2021; 12:865doi: 10.1038/s41467-021-21168-6.
doi: 10.1038/s41467-021-21168-6
Yang X, Yu Q, Xu H, Zhou J. Upregulation of CD22 by chidamide promotes CAR T cells functionality. Sci Rep 2021; 11:20637doi: 10.1038/s41598-021-00227-4.
doi: 10.1038/s41598-021-00227-4
Zhang X, Zhu L, Zhang H, Chen S, Xiao Y. CAR-T cell therapy in hematological malignancies: Current opportunities and challenges. Front Immunol 2022; 13:927153doi: 10.3389/fimmu.2022.927153.
doi: 10.3389/fimmu.2022.927153
Shah NN, Johnson BD, Schneider D, Zhu F, Szabo A, Keever-Taylor CA, et al. Bispecific anti-CD20, anti-CD19 CAR T cells for relapsed B cell malignancies: a phase 1 dose escalation and expansion trial. Nat Med 2020; 26:1569–1575. doi: 10.1038/s41591-020-1081-3.
doi: 10.1038/s41591-020-1081-3
Dai H, Wu Z, Jia H, Tong C, Guo Y, Ti D, et al. Bispecific CAR-T cells targeting both CD19 and CD22 for therapy of adults with relapsed or refractory B cell acute lymphoblastic leukemia. J Hematol Oncol 2020; 13:30doi: 10.1186/s13045-020-00856-8.
doi: 10.1186/s13045-020-00856-8
Spiegel JY, Patel S, Muffly L, Hossain NM, Oak J, Baird JH, et al. CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: a phase 1 trial. Nat Med 2021; 27:1419–1431. doi: 10.1038/s41591-021-01436-0.
doi: 10.1038/s41591-021-01436-0
Wang Y, Cao J, Gu W, Shi M, Lan J, Yan Z, et al. Long-term follow-up of combination of B-cell maturation antigen and CD19 chimeric antigen receptor T cells in multiple myeloma. J Clin Oncol 2022; 40:2246–2256. doi: 10.1200/JCO.21.01676.
doi: 10.1200/JCO.21.01676
Du J, Jiang H, Dong B, Gao L, Liu L, Ge J, et al. Updated results of a multicenter first-in-human study of BCMA/CD19 dual-targeting fast CAR-T GC012F for patients with relapsed/refractory multiple myeloma (RRMM). J Clin Oncol 2022; 40: (16_suppl): 8005doi: 10.1200/JCO.2022.40.16_suppl.8005.
doi: 10.1200/JCO.2022.40.16_suppl.8005
Mei H, Li C, Jiang H, Zhao X, Huang Z, Jin D, et al. A bispecific CAR-T cell therapy targeting BCMA and CD38 in relapsed or refractory multiple myeloma. J Hematol Oncol 2021; 14:161doi: 10.1186/s13045-021-01170-7.
doi: 10.1186/s13045-021-01170-7
Zah E, Nam E, Bhuvan V, Tran U, Ji BY, Gosliner SB, et al. Systematically optimized BCMA/CS1 bispecific CAR-T cells robustly control heterogeneous multiple myeloma. Nat Commun 2020; 11:2283doi: 10.1038/s41467-020-16160-5.
doi: 10.1038/s41467-020-16160-5
Fernández de Larrea C, Staehr M, Lopez AV, Ng KY, Chen Y, Godfrey WD, et al. Defining an optimal dual-targeted CAR T-cell therapy approach simultaneously targeting BCMA and GPRC5D to prevent BCMA escape-driven relapse in multiple myeloma. Blood Cancer Discov 2020; 1:146–154. doi: 10.1158/2643-3230.BCD-20-0020.
doi: 10.1158/2643-3230.BCD-20-0020
Liu S, Deng B, Yin Z, Lin Y, An L, Liu D, et al. Combination of CD19 and CD22 CAR-T cell therapy in relapsed B-cell acute lymphoblastic leukemia after allogeneic transplantation. Am J Hematol 2021; 96:671–679. doi: 10.1002/ajh.26160.
doi: 10.1002/ajh.26160
Blanco B, Ramírez-Fernández Á, Bueno C, Argemí-Muntadas L, Fuentes P, Aguilar-Sopeña Ó, et al. Overcoming CAR-mediated CD19 downmodulation and leukemia relapse with T lymphocytes secreting anti-CD19 T-cell engagers. Cancer Immunol Res 2022; 10:498–511. doi: 10.1158/2326-6066.CIR-21-0853.
doi: 10.1158/2326-6066.CIR-21-0853
Cohen AD, Garfall AL, Stadtmauer EA, Melenhorst JJ, Lacey SF, Lancaster E, et al. B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma. J Clin Invest 2019; 129:2210–2221. doi: 10.1172/JCI126397.
doi: 10.1172/JCI126397
Brudno JN, Maric I, Hartman SD, Rose JJ, Wang M, Lam N, et al. T cells genetically modified to express an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of poor-prognosis relapsed multiple myeloma. J Clin Oncol 2018; 36:2267–2280. doi: 10.1200/JCO.2018.77.8084.
doi: 10.1200/JCO.2018.77.8084
Da Vià MC, Dietrich O, Truger M, Arampatzi P, Duell J, Heidemeier A, et al. Homozygous BCMA gene deletion in response to anti-BCMA CAR T cells in a patient with multiple myeloma. Nat Med 2021; 27:616–619. doi: 10.1038/s41591-021-01245-5.
doi: 10.1038/s41591-021-01245-5
Samur MK, Fulciniti M, Aktas Samur A, Bazarbachi AH, Tai YT, Prabhala R, et al. Biallelic loss of BCMA as a resistance mechanism to CAR T cell therapy in a patient with multiple myeloma. Nat Commun 2021; 12:868doi: 10.1038/s41467-021-21177-5.
doi: 10.1038/s41467-021-21177-5
Singh N, Frey NV, Engels B, Barrett DM, Shestova O, Ravikumar P, et al. Antigen-independent activation enhances the efficacy of 4-1BB-costimulated CD22 CAR T cells. Nat Med 2021; 27:842–850. doi: 10.1038/s41591-021-01326-5.
doi: 10.1038/s41591-021-01326-5
Majzner RG, Rietberg SP, Sotillo E, Dong R, Vachharajani VT, Labanieh L, et al. Tuning the antigen density requirement for CAR T-cell activity. Cancer Discov 2020; 10:702–723. doi: 10.1158/2159-8290.CD-19-0945.
doi: 10.1158/2159-8290.CD-19-0945
Liu Y, Liu G, Wang J, Zheng ZY, Jia L, Rui W, et al. Chimeric STAR receptors using TCR machinery mediate robust responses against solid tumors. Sci Transl Med 2021; 13:eabb5191doi: 10.1126/scitranslmed.abb5191.
doi: 10.1126/scitranslmed.abb5191
Laurent SA, Hoffmann FS, Kuhn PH, Cheng Q, Chu Y, Schmidt-Supprian M, et al. γ-Secretase directly sheds the survival receptor BCMA from plasma cells. Nat Commun 2015; 6:7333doi: 10.1038/ncomms8333.
doi: 10.1038/ncomms8333
Pont MJ, Hill T, Cole GO, Abbott JJ, Kelliher J, Salter AI, et al. γ-Secretase inhibition increases efficacy of BCMA-specific chimeric antigen receptor T cells in multiple myeloma. Blood 2019; 134:1585–1597. doi: 10.1182/blood.2019000050.
doi: 10.1182/blood.2019000050
Cowan AJ, Pont M, Sather BD, Turtle CJ, Till BG, Libby E, et al. Safety and efficacy of fully human BCMA CAR T cells in combination with a gamma secretase inhibitor to increase BCMA surface expression in patients with relapsed or refractory multiple myeloma. Blood 2021; 138: (Suppl 1): 551doi: 10.1182/blood-2021-154170.
doi: 10.1182/blood-2021-154170
Garcia-Guerrero E, Rodríguez-Lobato LG, Danhof S, Sierro-Martínez B, Goetz R, Sauer M, et al. ATRA augments BCMA expression on myeloma cells and enhances recognition by BCMA-CAR T-cells. Blood 2020; 136:13–14. doi: 10.1182/blood-2020-142572.
doi: 10.1182/blood-2020-142572
Gumber D, Wang LD. Improving CAR-T immunotherapy: overcoming the challenges of T cell exhaustion. EBioMedicine 2022; 77:103941doi: 10.1016/j.ebiom.2022.103941.
doi: 10.1016/j.ebiom.2022.103941
Qin L, Lai Y, Zhao R, Wei X, Weng J, Lai P, et al. Incorporation of a hinge domain improves the expansion of chimeric antigen receptor T cells. J Hematol Oncol 2017; 10:68doi: 10.1186/s13045-017-0437-8.
doi: 10.1186/s13045-017-0437-8
Leick MB, Silva H, Scarfò I, Larson R, Choi BD, Bouffard AA, et al. Non-cleavable hinge enhances avidity and expansion of CAR-T cells for acute myeloid leukemia. Cancer Cell 2022; 40:494–508. e5. doi: 10.1016/j.ccell.2022.04.001.
doi: 10.1016/j.ccell.2022.04.001
McComb S, Nguyen T, Shepherd A, Henry KA, Bloemberg D, Marcil A, et al. Programmable attenuation of antigenic sensitivity for a nanobody-based EGFR chimeric antigen receptor through hinge domain truncation. Front Immunol 2022; 13:864868doi: 10.3389/fimmu.2022.864868.
doi: 10.3389/fimmu.2022.864868
Zhang A, Sun Y, Du J, Dong Y, Pang H, Ma L, et al. Reducing hinge flexibility of CAR-T cells prolongs survival in vivo with low cytokines release. Front Immunol 2021; 12:724211doi: 10.3389/fimmu.2021.724211.
doi: 10.3389/fimmu.2021.724211
Bister A, Ibach T, Haist C, Smorra D, Roellecke K, Wagenmann M, et al. A novel CD34-derived hinge for rapid and efficient detection and enrichment of CAR T cells. Mol Ther Oncolytics 2021; 23:534–546. doi: 10.1016/j.omto.2021.11.003.
doi: 10.1016/j.omto.2021.11.003
Schäfer D, Henze J, Pfeifer R, Schleicher A, Brauner J, Mockel-Tenbrinck N, et al. A novel Siglec-4 derived spacer improves the functionality of CAR T cells against membrane-proximal epitopes. Front Immunol 2020; 11:1704doi: 10.3389/fimmu.2020.01704.
doi: 10.3389/fimmu.2020.01704
Liu L, Sommermeyer D, Cabanov A, Kosasih P, Hill T, Riddell SR, et al. Inclusion of strep-tag II in design of antigen receptors for T-cell immunotherapy. Nat Biotechnol 2016; 34:430–434. doi: 10.1038/nbt.3461.
doi: 10.1038/nbt.3461
Wu L, Wei Q, Brzostek J, Gascoigne NRJ. Signaling from T cell receptors (TCRs) and chimeric antigen receptors (CARs) on T cells. Cell Mol Immunol 2020; 17:600–612. doi: 10.1038/s41423-020-0470-3.
doi: 10.1038/s41423-020-0470-3
Zhao X, Yang J, Zhang X, Lu XA, Xiong M, Zhang J, et al. Efficacy and safety of CD28- or 4-1BB-based CD19 CAR-T cells in B cell acute lymphoblastic leukemia. Mol Ther Oncolytics 2020; 18:272–281. doi: 10.1016/j.omto.2020.06.016.
doi: 10.1016/j.omto.2020.06.016
Roselli E, Boucher JC, Li G, Kotani H, Spitler K, Reid K, et al. 4-1BB and optimized CD28 co-stimulation enhances function of human mono-specific and bi-specific third-generation CAR T cells. J Immunother Cancer 2021; 9:e003354doi: 10.1136/jitc-2021-003354.
doi: 10.1136/jitc-2021-003354
Salter AI, Ivey RG, Kennedy JJ, Voillet V, Rajan A, Alderman EJ, et al. Phosphoproteomic analysis of chimeric antigen receptor signaling reveals kinetic and quantitative differences that affect cell function. Sci Signal 2018; 11:eaat6753doi: 10.1126/scisignal.aat6753.
doi: 10.1126/scisignal.aat6753
Milone MC, Fish JD, Carpenito C, Carroll RG, Binder GK, Teachey D, et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther 2009; 17:1453–1464. doi: 10.1038/mt.2009.83.
doi: 10.1038/mt.2009.83
Chester C, Sanmamed MF, Wang J, Melero I. Immunotherapy targeting 4-1BB: mechanistic rationale, clinical results, and future strategies. Blood 2018; 131:49–57. doi: 10.1182/blood-2017-06-741041.
doi: 10.1182/blood-2017-06-741041
Philipson BI, O’Connor RS, May MJ, June CH, Albelda SM, Milone MC. 4-1BB costimulation promotes CAR T cell survival through noncanonical NF-κB signaling. Sci Signal 2020; 13:eaay8248doi: 10.1126/scisignal.aay8248.
doi: 10.1126/scisignal.aay8248
Shah NN, Fry TJ. Mechanisms of resistance to CAR T cell therapy. Nat Rev Clin Oncol 2019; 16:372–385. doi: 10.1038/s41571-019-0184-6.
doi: 10.1038/s41571-019-0184-6
Boucher JC, Li G, Kotani H, Cabral ML, Morrissey D, Lee SB, et al. CD28 costimulatory domain-targeted mutations enhance chimeric antigen receptor T-cell function. Cancer Immunol Res 2021; 9:62–74. doi: 10.1158/2326-6066.CIR-20-0253.
doi: 10.1158/2326-6066.CIR-20-0253
Wu W, Zhou Q, Masubuchi T, Shi X, Li H, Xu X, et al. Multiple signaling roles of CD3ε and its application in CAR-T cell therapy. Cell 2020; 182:855–871. e23. doi: 10.1016/j.cell.2020.07.018.
doi: 10.1016/j.cell.2020.07.018
Ghassemi S, Nunez-Cruz S, O’Connor RS, Fraietta JA, Patel PR, Scholler J, et al. Reducing ex vivo culture improves the antileukemic activity of chimeric antigen receptor (CAR) T cells. Cancer Immunol Res 2018; 6:1100–1109. doi: 10.1158/2326-6066.CIR-17-0405.
doi: 10.1158/2326-6066.CIR-17-0405
Markley JC, Sadelain M. IL-7 and IL-21 are superior to IL-2 and IL-15 in promoting human T cell-mediated rejection of systemic lymphoma in immunodeficient mice. Blood 2010; 115:3508–3519. doi: 10.1182/blood-2009-09-241398.
doi: 10.1182/blood-2009-09-241398
Alizadeh D, Wong RA, Yang X, Wang D, Pecoraro JR, Kuo CF, et al. IL15 enhances CAR-T cell antitumor activity by reducing mTORC1 activity and preserving their stem cell memory phenotype. Cancer Immunol Res 2019; 7:759–772. doi: 10.1158/2326-6066.CIR-18-0466.
doi: 10.1158/2326-6066.CIR-18-0466
Wang Y, Tong C, Dai H, Wu Z, Han X, Guo Y, et al. Low-dose decitabine priming endows CAR T cells with enhanced and persistent antitumour potential via epigenetic reprogramming. Nat Commun 2021; 12:409doi: 10.1038/s41467-020-20696-x.
doi: 10.1038/s41467-020-20696-x
Melenhorst JJ, Chen GM, Wang M, Porter DL, Chen C, Collins MA, et al. Decade-long leukaemia remissions with persistence of CD4 + CAR T cells. Nature 2022; 602:503–509. doi: 10.1038/s41586-021-04390-6.
doi: 10.1038/s41586-021-04390-6
Wang X, Walter M, Urak R, Weng L, Huynh C, Lim L, et al. Lenalidomide enhances the function of CS1 chimeric antigen receptor - redirected T cells against multiple myeloma. Clin Cancer Res 2018; 24:106–119. doi: 10.1158/1078-0432.CCR-17-0344.
doi: 10.1158/1078-0432.CCR-17-0344
Works M, Soni N, Hauskins C, Sierra C, Baturevych A, Jones JC, et al. Anti-B-cell maturation antigen chimeric antigen receptor T cell function against multiple myeloma is enhanced in the presence of lenalidomide. Mol Cancer Ther 2019; 18:2246–2257. doi: 10.1158/1535-7163.MCT-18-1146.
doi: 10.1158/1535-7163.MCT-18-1146
Lynn RC, Weber EW, Sotillo E, Gennert D, Xu P, Good Z, et al. C-Jun overexpression in CAR T cells induces exhaustion resistance. Nature 2019; 576:293–300. doi: 10.1038/s41586-019-1805-z.
doi: 10.1038/s41586-019-1805-z
Seo H, González-Avalos E, Zhang W, Ramchandani P, Yang C, Lio CJ, et al. BATF and IRF4 cooperate to counter exhaustion in tumor-infiltrating CAR T cells. Nat Immunol 2021; 22:983–995. doi: 10.1038/s41590-021-00964-8.
doi: 10.1038/s41590-021-00964-8
Wei J, Long L, Zheng W, Dhungana Y, Lim SA, Guy C, et al. Targeting REGNASE-1 programs long-lived effector T cells for cancer therapy. Nature 2019; 576:471–476. doi: 10.1038/s41586-019-1821-z.
doi: 10.1038/s41586-019-1821-z
Prinzing B, Zebley CC, Petersen CT, Fan Y, Anido AA, Yi Z, et al. Deleting DNMT3A in CAR T cells prevents exhaustion and enhances antitumor activity. Sci Transl Med 2021; 13:eabh0272doi: 10.1126/scitranslmed.abh0272.
doi: 10.1126/scitranslmed.abh0272
Good CR, Aznar MA, Kuramitsu S, Samareh P, Agarwal S, Donahue G, et al. An NK-like CAR T cell transition in CAR T cell dysfunction. Cell 2021; 184:6081–6100. e26. doi: 10.1016/j.cell.2021.11.016.
doi: 10.1016/j.cell.2021.11.016
Fraietta JA, Nobles CL, Sammons MA, Lundh S, Carty SA, Reich TJ, et al. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature 2018; 558:307–312. doi: 10.1038/s41586-018-0178-z.
doi: 10.1038/s41586-018-0178-z
Kochenderfer JN, Wilson WH, Janik JE, Dudley ME, Stetler-Stevenson M, Feldman SA, et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood 2010; 116:4099–4102. doi: 10.1182/blood.
doi: 10.1182/blood
Brentjens RJ, Rivière I, Park JH, Davila ML, Wang X, Stefanski J, et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 2011; 118:4817–4828. doi: 10.1182/blood-2011-04-348540.
doi: 10.1182/blood-2011-04-348540
Augmenting CAR T cells with PD-1 blockade. Cancer Discov 2019; 9:158doi: 10.1158/2159-8290.CD-NB2018-165.
doi: 10.1158/2159-8290.CD-NB2018-165
Chong EA, Melenhorst JJ, Lacey SF, Ambrose DE, Gonzalez V, Levine BL, et al. PD-1 blockade modulates chimeric antigen receptor (CAR)-modified T cells: refueling the CAR. Blood 2017; 129:1039–1041. doi: 10.1182/blood-2016-09-738245.
doi: 10.1182/blood-2016-09-738245
Yost KE, Satpathy AT, Wells DK, Qi Y, Wang C, Kageyama R, et al. Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat Med 2019; 25:1251–1259. doi: 10.1038/s41591-019-0522-3.
doi: 10.1038/s41591-019-0522-3
Muthuvel M, Srinivasan H, Louis L, Martin S. Engineering off-the-shelf universal CAR T cells: a silver lining in the cloud. Cytokine 2022; 156:155920doi: 10.1016/j.cyto.2022.155920.
doi: 10.1016/j.cyto.2022.155920
Depil S, Duchateau P, Grupp SA, Mufti G, Poirot L. ‘Off-the-shelf’ allogeneic CAR T cells: development and challenges. Nat Rev Drug Discov 2020; 19:185–199. doi: 10.1038/s41573-019-0051-2.
doi: 10.1038/s41573-019-0051-2
Young RM, Engel NW, Uslu U, Wellhausen N, June CH. Next-generation CAR T-cell therapies. Cancer Discov 2022; 12:1625–1633. doi: 10.1158/2159-8290.CD-21-1683.
doi: 10.1158/2159-8290.CD-21-1683
Benjamin R, Graham C, Yallop D, Jozwik A, Mirci-Danicar OC, Lucchini G, et al. Genome-edited, donor-derived allogeneic anti-CD19 chimeric antigen receptor T cells in paediatric and adult B-cell acute lymphoblastic leukaemia: results of two phase 1 studies. Lancet 2020; 396:1885–1894. doi: 10.1016/S0140-6736(20)32334-5.
doi: 10.1016/S0140-6736(20)32334-5
Shah NN, Lee DW, Yates B, Yuan CM, Shalabi H, Martin S, et al. Long-term follow-up of CD19-CAR T-cell therapy in children and young adults with B-ALL. J Clin Oncol 2021; 39:1650–1659. doi: 10.1200/JCO.20.02262.
doi: 10.1200/JCO.20.02262
Zhao YL, Liu DY, Sun RJ, Zhang JP, Zhou JR, Wei ZJ, et al. Integrating CAR T-Cell therapy and transplantation: Comparisons of safety and long-term efficacy of allogeneic hematopoietic stem cell transplantation after CAR T-cell or chemotherapy-based complete remission in B-cell acute lymphoblastic leukemia. Front Immunol 2021; 12:605766doi: 10.3389/fimmu.2021.605766.
doi: 10.3389/fimmu.2021.605766
Jiang H, Li C, Yin P, Guo T, Liu L, Xia L, et al. Anti-CD19 chimeric antigen receptor-modified T-cell therapy bridging to allogeneic hematopoietic stem cell transplantation for relapsed/refractory B-cell acute lymphoblastic leukemia: an open-label pragmatic clinical trial. Am J Hematol 2019; 94:1113–1122. doi: 10.1002/ajh.25582.
doi: 10.1002/ajh.25582
Shadman M, Gauthier J, Hay KA, Voutsinas JM, Milano F, Li A, et al. Safety of allogeneic hematopoietic cell transplant in adults after CD19-targeted CAR T-cell therapy. Blood Adv 2019; 3:3062–3069. doi: 10.1182/bloodadvances.2019000593.
doi: 10.1182/bloodadvances.2019000593
Garfall AL, Stadtmauer EA, Hwang WT, Lacey SF, Melenhorst JJ, Krevvata M, et al. Anti-CD19 CAR T cells with high-dose melphalan and autologous stem cell transplantation for refractory multiple myeloma. JCI Insight 2019; 4:e127684doi: 10.1172/jci.insight.127684.
doi: 10.1172/jci.insight.127684
Shi X, Yan L, Shang J, Kang L, Yan Z, Jin S, et al. Anti-CD19 and anti-BCMA CAR T cell therapy followed by lenalidomide maintenance after autologous stem-cell transplantation for high-risk newly diagnosed multiple myeloma. Am J Hematol 2022; 97:537–547. doi: 10.1002/ajh.26486.
doi: 10.1002/ajh.26486
Qayed M, McGuirk JP, Myers GD, Parameswaran V, Waller EK, Holman P, et al. Leukapheresis guidance and best practices for optimal chimeric antigen receptor T-cell manufacturing. Cytotherapy 2022; 24:869–878. doi: 10.1016/j.jcyt.2022.05.003.
doi: 10.1016/j.jcyt.2022.05.003
Vormittag P, Gunn R, Ghorashian S, Veraitch FS. A guide to manufacturing CAR T cell therapies. Curr Opin Biotechnol 2018; 53:164–181. doi: 10.1016/j.copbio.2018.01.025.
doi: 10.1016/j.copbio.2018.01.025
Li Y, Huo Y, Yu L, Wang J. Quality control and nonclinical research on CAR-T cell products: general principles and key issues. Eng 2019; 5:122–131. doi: 10.1016/j.eng.2018.12.003.
doi: 10.1016/j.eng.2018.12.003