Emerging therapeutic strategies for enhancing sensitivity and countering resistance to programmed cell death protein 1 or programmed death-ligand 1 inhibitors in non-small cell lung cancer.
drug resistance
immunotherapy
neoplasm
non-small cell lung cancer
programmed cell death protein 1
programmed death-ligand 1
tumor escape
Journal
Cancer
ISSN: 1097-0142
Titre abrégé: Cancer
Pays: United States
ID NLM: 0374236
Informations de publication
Date de publication:
01 05 2023
01 05 2023
Historique:
revised:
27
10
2022
received:
20
05
2022
accepted:
13
12
2022
medline:
11
4
2023
pubmed:
28
2
2023
entrez:
27
2
2023
Statut:
ppublish
Résumé
The availability of agents targeting the programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) immune checkpoint has transformed treatment of advanced and/or metastatic non-small cell lung cancer (NSCLC). However, a substantial proportion of patients treated with these agents do not respond or experience only a brief period of clinical benefit. Even among those whose disease responds, many subsequently experience disease progression. Consequently, novel approaches are needed that enhance antitumor immunity and counter resistance to PD-(L)1 inhibitors, thereby improving and/or prolonging responses and patient outcomes, in both PD-(L)1 inhibitor-sensitive and inhibitor-resistant NSCLC. Mechanisms contributing to sensitivity and/or resistance to PD-(L)1 inhibitors in NSCLC include upregulation of other immune checkpoints and/or the presence of an immunosuppressive tumor microenvironment, which represent potential targets for new therapies. This review explores novel therapeutic regimens under investigation for enhancing responses to PD-(L)1 inhibitors and countering resistance, and summarizes the latest clinical evidence in NSCLC.
Substances chimiques
Immune Checkpoint Inhibitors
0
Programmed Cell Death 1 Receptor
0
B7-H1 Antigen
0
Types de publication
Journal Article
Review
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1319-1350Informations de copyright
© 2023 The Authors. Cancer published by Wiley Periodicals LLC on behalf of American Cancer Society.
Références
Xia L, Liu Y, Wang Y. PD-1/PD-L1 blockade therapy in advanced non-small-cell lung cancer: current status and future directions. Oncologist. 2019;24(suppl 1):S31-S41. doi:10.1634/theoncologist.2019-IO-S1-s05
Grant MJ, Herbst RS, Goldberg SB. Selecting the optimal immunotherapy regimen in driver-negative metastatic NSCLC. Nat Rev Clin Oncol. 2021;18(10):625-644. doi:10.1038/s41571-021-00520-1
Planchard D, Popat S, Kerr K, et al. Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018;29(suppl 4):iv192-iv237. doi:10.1093/annonc/mdy275
Bodor JN, Boumber Y, Borghaei H. Biomarkers for immune checkpoint inhibition in non-small cell lung cancer (NSCLC). Cancer. 2020;126(2):260-270. doi:10.1002/cncr.32468
Rossi G, Russo A, Tagliamento M, et al. Precision medicine for NSCLC in the era of immunotherapy: new biomarkers to select the most suitable treatment or the most suitable patient. Cancers (Basel). 2020;12(5):1125. doi:10.3390/cancers12051125
Hallqvist A, Rohlin A, Raghavan S. Immune checkpoint blockade and biomarkers of clinical response in non-small cell lung cancer. Scand J Immunol. 2020;92(6):e12980. doi:10.1111/sji.12980
Kluger HM, Tawbi HA, Ascierto ML, et al. Defining tumor resistance to PD-1 pathway blockade: recommendations from the first meeting of the SITC Immunotherapy Resistance Taskforce. J Immunother Cancer. 2020;8(1):e000398. doi:10.1136/jitc-2019-000398
Man J, Millican J, Mulvey A, Gebski V, Hui R. Response rate and survival at key timepoints with PD-1 blockade vs chemotherapy in PD-L1 subgroups: meta-analysis of metastatic NSCLC trials. JNCI Cancer Spectr. 2021;5(3):pkab012. doi:10.1093/jncics/pkab012
Herbst RS, Garon EB, Kim DW, et al. Five year survival update from KEYNOTE-010: pembrolizumab versus docetaxel for previously treated, programmed death-ligand 1-positive advanced NSCLC. J Thorac Oncol. 2021;16(10):1718-1732. doi:10.1016/j.jtho.2021.05.001
Borghaei H, Gettinger S, Vokes EE, et al. Five-year outcomes from the randomized, phase III trials CheckMate 017 and 057: nivolumab versus docetaxel in previously treated non-small-cell lung cancer. J Clin Oncol. 2021;39(7):723-733. doi:10.1200/jco.20.01605
Hellmann MD, Paz-Ares L, Bernabe Caro R, et al. Nivolumab plus ipilimumab in advanced non-small-cell lung cancer. N Engl J Med. 2019;381(21):2020-2031. doi:10.1056/NEJMoa1910231
Paz-Ares L, Luft A, Vicente D, et al. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N Engl J Med. 2018;379(21):2040-2051. doi:10.1056/NEJMoa1810865
Reck M, Ciuleanu TE, Cobo M, et al. First-line nivolumab plus ipilimumab with two cycles of chemotherapy versus chemotherapy alone (four cycles) in advanced non-small-cell lung cancer: CheckMate 9LA 2-year update. ESMO Open. 2021;6(5):100273. doi:10.1016/j.esmoop.2021.100273
Rittmeyer A, Barlesi F, Waterkamp D, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389(10066):255-265. doi:10.1016/S0140-6736(16)32517-X
Rodríguez-Abreu D, Powell SF, Hochmair MJ, et al. Pemetrexed plus platinum with or without pembrolizumab in patients with previously untreated metastatic nonsquamous NSCLC: protocol-specified final analysis from KEYNOTE-189. Ann Oncol. 2021;32(7):881-895. doi:10.1016/j.annonc.2021.04.008
Boyero L, Sánchez-Gastaldo A, Alonso M, Noguera-Uclés JF, Molina-Pinelo S, Bernabé-Caro R. Primary and acquired resistance to immunotherapy in lung cancer: unveiling the mechanisms underlying of immune checkpoint blockade therapy. Cancers (Basel). 2020;12(12):3729. doi:10.3390/cancers12123729
Horvath L, Thienpont B, Zhao L, Wolf D, Pircher A. Overcoming immunotherapy resistance in non-small cell lung cancer (NSCLC) - novel approaches and future outlook. Mol Cancer. 2020;19(1):141. doi:10.1186/s12943-020-01260-z
Chocarro de Erauso L, Zuazo M, Arasanz H, et al. Resistance to PD-L1/PD-1 blockade immunotherapy. A tumor-intrinsic or tumor-extrinsic phenomenon? Front Pharmacol. 2020;11:441. doi:10.3389/fphar.2020.00441
Dahan R, Sega E, Engelhardt J, Selby M, Korman AJ, Ravetch JV. FcγRs modulate the anti-tumor activity of antibodies targeting the PD-1/PD-L1 axis. Cancer Cell. 2015;28(3):285-295. doi:10.1016/j.ccell.2015.08.004
Zhang T, Song X, Xu L, et al. The binding of an anti-PD-1 antibody to FcγRΙ has a profound impact on its biological functions. Cancer Immunol Immunother. 2018;67(7):1079-1090. doi:10.1007/s00262-018-2160-x
Kurtulus S, Sakuishi K, Ngiow SF, et al. TIGIT predominantly regulates the immune response via regulatory T cells. J Clin Investig. 2015;125(11):4053-4062. doi:10.1172/JCI81187
Joller N, Lozano E, Burkett PR, et al. Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity. 2014;40(4):569-581. doi:10.1016/j.immuni.2014.02.012
Manieri NA, Chiang EY, Grogan JL. TIGIT: a key inhibitor of the cancer immunity cycle. Trends Immunol. 2017;38(1):20-28. doi:10.1016/j.it.2016.10.002
Harjunpää H, Guillerey C. TIGIT as an emerging immune checkpoint. Clin Exp Immunol. 2020;200(2):108-119. doi:10.1111/cei.13407
De Giglio A, Di Federico A, Nuvola G, Deiana C, Gelsomino F. The landscape of immunotherapy in advanced NSCLC: driving beyond PD-1/PD-L1 inhibitors (CTLA-4, LAG3, IDO, OX40, TIGIT, Vaccines). Curr Oncol Rep. 2021;23(11):126. doi:10.1007/s11912-021-01124-9
Acharya N, Sabatos-Peyton C, Anderson AC. Tim-3 finds its place in the cancer immunotherapy landscape. J Immunother Cancer. 2020;8(1):e000911. doi:10.1136/jitc-2020-000911
Lecocq Q, Keyaerts M, Devoogdt N, Breckpot K. The next-generation immune checkpoint LAG-3 and its therapeutic potential in oncology: third time's a charm. Int J Mol Sci. 2020;22(1):75. doi:10.3390/ijms22010075
Choi Y, Shi Y, Haymaker CL, Naing A, Ciliberto G, Hajjar J. T-cell agonists in cancer immunotherapy. J Immunother Cancer. 2020;8(2):e000966. doi:10.1136/jitc-2020-000966
Linch SN, McNamara MJ, Redmond WL. OX40 agonists and combination immunotherapy: putting the pedal to the metal. Front Oncol. 2015;5:34. doi:10.3389/fonc.2015.00034
Huang MY, Jiang XM, Wang BL, Sun Y, Lu JJ. Combination therapy with PD-1/PD-L1 blockade in non-small cell lung cancer: strategies and mechanisms. Pharmacol Therapeut. 2021;219:107694. doi:10.1016/j.pharmthera.2020.107694
Le X, Nilsson M, Goldman J, et al. Dual EGFR-VEGF pathway inhibition: a promising strategy for patients with EGFR-mutant NSCLC. J Thorac Oncol. 2021;16(2):205-215. doi:10.1016/j.jtho.2020.10.006
Paz-Ares L, Kim TM, Vicente D, et al. Bintrafusp alfa, a bifunctional fusion protein targeting TGF-β and PD-L1, in second-line treatment of patients with NSCLC: results from an expansion cohort of a phase 1 trial. J Thorac Oncol. 2020;15(7):1210-1222. doi:10.1016/j.jtho.2020.03.003
Briukhovetska D, Dörr J, Endres S, Libby P, Dinarello CA, Kobold S. Interleukins in cancer: from biology to therapy. Nat Rev Cancer. 2021;21(8):481-499. doi:10.1038/s41568-021-00363-z
Li J, Shen C, Wang X, et al. Prognostic value of TGF-β in lung cancer: systematic review and meta-analysis. BMC Cancer. 2019;19(1):691. doi:10.1186/s12885-019-5917-5
Lee YJ, Lee JB, Ha S-J, Kim HR. Clinical perspectives to overcome acquired resistance to anti-programmed death-1 and anti-programmed death ligand-1 therapy in non-small cell lung cancer. Mol Cells. 2021;44(5):363-373. doi:10.14348/molcells.2021.0044
Błach J, Wojas-Krawczyk K, Nicoś M, Krawczyk P. Failure of immunotherapy-the molecular and immunological origin of immunotherapy resistance in lung cancer. Int J Mol Sci. 2021;22(16):9030. doi:10.3390/ijms22169030
Akhurst RJ. Targeting TGF-β signaling for therapeutic gain. Cold Spring Harb Perspect Biol. 2017;9(10):a022301. doi:10.1101/cshperspect.a022301
Wrangle JM, Awad MM, Badin FB, et al. Preliminary data from QUILT 3.055: a phase 2 multi-cohort study of N803 (IL-15 superagonist) in combination with checkpoint inhibitors (CPI). J Clin Oncol. 2021;39(suppl 15):2596. doi:10.1200/JCO.2021.39.15_suppl.2596
Zhu Y, An X, Zhang X, Qiao Y, Zheng T, Li X. STING: a master regulator in the cancer-immunity cycle. Mol Cancer. 2019;18(1):152. doi:10.1186/s12943-019-1087-y
Zaretsky JM, Garcia-Diaz A, Shin DS, et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med. 2016;375(9):819-829. doi:10.1056/NEJMoa1604958
Chen X, Song X, Li K, Zhang T. FcγR-binding is an important functional attribute for immune checkpoint antibodies in cancer immunotherapy. Front Immunol. 2019;10:292. doi:10.3389/fimmu.2019.00292
Lu S, Wang J, Yu Y, et al. Tislelizumab plus chemotherapy as first-line treatment for locally advanced or metastatic nonsquamous NSCLC (RATIONALE 304): a randomized phase 3 trial. J Thorac Oncol. 2021;16(9):1512-1522. doi:10.1016/j.jtho.2021.05.005
Wang J, Lu S, Yu X, et al. Tislelizumab plus chemotherapy vs chemotherapy alone as first-line treatment for advanced squamous non-small-cell lung cancer: a phase 3 randomized clinical trial. JAMA Oncol. 2021;7(5):709-717. doi:10.1001/jamaoncol.2021.0366
Zhou C, Huang D, Yu X, et al. Abstract CT039: Results from RATIONALE 303: a global phase 3 study of tislelizumab (TIS) vs docetaxel (TAX) as second- or third-line therapy for patients with locally advanced or metastatic NSCLC. Cancer Res. 2021;81(suppl 13):CT039. doi:10.1158/1538-7445.AM2021-CT039
Tjulandin S, Demidov L, Moiseyenko V, et al. Novel PD-1 inhibitor prolgolimab: expanding non-resectable/metastatic melanoma therapy choice. Eur J Cancer. 2021;149(24):222-232. doi:10.1016/j.ejca.2021.02.030
Tjulandin SA, Fedyanin M, Semiglazova T, et al. BCD-100 - first Russian PD-1 inhibitor. J Mod Oncol. 2017;19(3):5-12.
Pathak R, Pharaon RR, Mohanty A, Villaflor VM, Salgia R, Massarelli E. Acquired resistance to PD-1/PD-L1 blockade in lung cancer: mechanisms and patterns of failure. Cancers (Basel). 2020;12(12):3851. doi:10.3390/cancers12123851
Johnson DB, Nixon MJ, Wang Y, et al. Tumor-specific MHC-II expression drives a unique pattern of resistance to immunotherapy via LAG-3/FCRL6 engagement. JCI Insight. 2018;3(24):e120360. doi:10.1172/jci.insight.120360
Koyama S, Akbay EA, Li YY, et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun. 2016;7(1):10501. doi:10.1038/ncomms10501
Fourcade J, Sun Z, Chauvin JM, et al. CD226 opposes TIGIT to disrupt Tregs in melanoma. JCI Insight. 2018;3(14):e121157. doi:10.1172/jci.insight.121157
Kumagai S, Togashi Y, Kamada T, et al. The PD-1 expression balance between effector and regulatory T cells predicts the clinical efficacy of PD-1 blockade therapies. Nat Immunol. 2020;21(11):1346-1358. doi:10.1038/s41590-020-0769-3
Zhulai G, Oleinik E. Targeting regulatory T cells in anti-PD-1/PD-L1 cancer immunotherapy. Scand J Immunol. 2022;95(3):e13129. doi:10.1111/sji.13129
Kamada T, Togashi Y, Tay C, et al. PD-1(+) regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer. Proc Natl Acad Sci U S A. 2019;116(20):9999-10008. doi:10.1073/pnas.1822001116
O'Brien SM, Klampatsa A, Thompson JC, et al. Function of human tumor-infiltrating lymphocytes in early-stage non-small cell lung cancer. Cancer Immunol Res. 2019;7(6):896-909. doi:10.1158/2326-6066.cir-18-0713
Chauvin JM, Pagliano O, Fourcade J, et al. TIGIT and PD-1 impair tumor antigen-specific CD8⁺ T cells in melanoma patients. J Clin Investig. 2015;125(5):2046-2058. doi:10.1172/jci80445
Ge Z, Peppelenbosch MP, Sprengers D, Kwekkeboom J. TIGIT, the next step towards successful combination immune checkpoint therapy in cancer. Front Immunol. 2021;12:699895. doi:10.3389/fimmu.2021.699895
Ge Z, Zhou G, Campos Carrascosa L, et al. TIGIT and PD1 co-blockade restores ex vivo functions of human tumor-infiltrating CD8(+) T cells in hepatocellular carcinoma. Cell Mol Gastroenterol Hepatol. 2021;12(2):443-464. doi:10.1016/j.jcmgh.2021.03.003
Chen X, Xue L, Ding X, et al. Abstract 1854: a Fc-competent anti-human TIGIT blocking antibody BGB-A1217 elicits strong immune responses and potent anti-tumor efficacy in pre-clinical models. Cancer Res. 2021;81(suppl 13):1854. doi:10.1158/1538-7445.AM2021-1854
Hung AL, Maxwell R, Theodros D, et al. TIGIT and PD-1 dual checkpoint blockade enhances antitumor immunity and survival in GBM. Oncoimmunology. 2018;7(8):e1466769. doi:10.1080/2162402X.2018.1466769
Johnston RJ, Comps-Agrar L, Hackney J, et al. The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell. 2014;26(6):923-937. doi:10.1016/j.ccell.2014.10.018
Rotte A, Sahasranaman S, Budha N. Targeting TIGIT for immunotherapy of cancer: update on clinical development. Biomedicines. 2021;9(9):1277. doi:10.3390/biomedicines9091277
Cho BC, Rodriguez-Abreu D, Hussein M, et al. LBA2 Updated analysis and patient-reported outcomes (PROs) from CITYSCAPE: a randomised, double-blind, phase II study of the anti-TIGIT antibody tiragolumab + atezolizumab (TA) versus placebo + atezolizumab (PA) as first-line treatment for PD-L1+ NSCLC. Ann Oncol. 2021;32(suppl 7):S1428. doi:10.1016/j.annonc.2021.10.217
Genentech. Genentech Reports Interim Results for Phase III SKYSCRAPER-01 Study in PD-L1-High Metastatic Non-Small Cell Lung Cancer. Accessed September, 2022. https://www.gene.com/media/press-releases/14951/2022-05-10/genentech-reports-interim-results-for-ph
Niu J, Nagrial A, Voskoboynik M, et al. 1410P Safety and efficacy of vibostolimab, an anti-TIGIT antibody, plus pembrolizumab in patients with anti-PD-1/PD-L1-naive NSCLC. Ann Oncol. 2020;31(suppl 4):S891-S892. doi:10.1016/j.annonc.2020.08.1724
Ahn M-J, Niu J, Kim D-W, et al. 1400P Vibostolimab, an anti-TIGIT antibody, as monotherapy and in combination with pembrolizumab in anti-PD-1/PD-L1-refractory NSCLC. Ann Oncol. 2020;31(suppl 4):S887. doi:10.1016/j.annonc.2020.08.1714
Frentzas S, Meniawy T, Kao SC-H, et al. AdvanTIG-105: phase 1 dose-escalation study of anti-TIGIT monoclonal antibody ociperlimab (BGB-A1217) in combination with tislelizumab in patients with advanced solid tumors. J Clin Oncol. 2021;39(suppl 15):2583. doi:10.1200/JCO.2021.39.15_suppl.2583
Guo Z, Wang X, Cheng D, Xia Z, Luan M, Zhang S. PD-1 blockade and OX40 triggering synergistically protects against tumor growth in a murine model of ovarian cancer. PLoS One. 2014;9(2):e89350. doi:10.1371/journal.pone.0089350
Ma Y, Li J, Wang H, et al. Combination of PD-1 inhibitor and OX40 agonist induces tumor rejection and immune memory in mouse models of pancreatic cancer. Gastroenterology. 2020;159(1):306-319.e12. doi:10.1053/j.gastro.2020.03.018
Gutierrez M, Moreno V, Heinhuis KM, et al. OX40 agonist BMS-986178 alone or in combination with nivolumab and/or ipilimumab in patients with advanced solid tumors. Clin Cancer Res. 2021;27(2):460-472. doi:10.1158/1078-0432.CCR-20-1830
Postel-Vinay S, Lam VK, Ros W, et al. Abstract CT150: A first-in-human phase I study of the OX40 agonist GSK3174998 (GSK998) +/- pembrolizumab in patients (Pts) with selected advanced solid tumors (ENGAGE-1). Cancer Res. 2020;80(suppl 16):CT150. doi:10.1158/1538-7445.AM2020-CT150
Kuang Z, Pu P, Wu M, et al. A novel bispecific antibody with PD-L1-assisted OX40 activation for cancer treatment. Mol Cancer Therapeut. 2020;19(12):2564-2574. doi:10.1158/1535-7163.MCT-20-0226
Liu Y, Jiang B, Zhang T, et al. 699 A differentiated anti-OX40 agonist BGB-A445 does not block OX40-OX40L interaction and reveals remarkable anti-tumor efficacy in preclinical models. J Immunother Cancer. 2020;8(suppl 3):A420. doi:10.1136/jitc-2020-SITC2020.0699
Perets R, Bar J, Rasco DW, et al. Safety and efficacy of quavonlimab, a novel anti-CTLA-4 antibody (MK-1308), in combination with pembrolizumab in first-line advanced non-small-cell lung cancer. Ann Oncol. 2021;32(3):395-403. doi:10.1016/j.annonc.2020.11.020
Rolfo CD, Bentzen S, Devenport M, Liu Y, Zheng P. First-in-human phase I/II clinical trial of ONC-392: preserving CTLA-4 immune tolerance checkpoint for safer and more effective cancer immunotherapy. J Clin Oncol. 2020;38(suppl 15):TPS3159. doi:10.1200/JCO.2020.38.15_suppl.TPS3159
Jenkins K, Johnson P, Zhang M, et al. 587 Tumor-activated Fc-engineered anti-CTLA-4 monoclonal antibody, XTX101, demonstrates tumor-selective PD and efficacy in preclinical models. J Immunother Cancer. 2020;8(suppl 3):A351. doi:10.1136/jitc-2020-SITC2020.0587
Dayoub AS, Brekken RA. TIMs, TAMs, and PS- antibody targeting: implications for cancer immunotherapy. Cell Commun Signal. 2020;18(1):29. doi:10.1186/s12964-020-0521-5
Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med. 2010;207(10):2187-2194. doi:10.1084/jem.20100643
Zhuang X, Zhang X, Xia X, et al. Ectopic expression of TIM-3 in lung cancers: a potential independent prognostic factor for patients with NSCLC. Am J Clin Pathol. 2012;137(6):978-985. doi:10.1309/AJCP9Q6OVLVSHTMY
Davar D, Boasberg P, Eroglu Z, et al. O21 A phase 1 study of TSR-022, an anti-TIM-3 monoclonal antibody, in combination with TSR-042 (anti-PD-1) in patients with colorectal cancer and post-PD-1 NSCLC and melanoma. J Immunother Cancer. 2018;6(suppl 1):115. doi:10.1186/s40425-018-0422-y
Lakhani N, Spreafico A, Tolcher AW, et al. 1019O Phase I studies of Sym021, an anti-PD-1 antibody, alone and in combination with Sym022 (anti-LAG-3) or Sym023 (anti-TIM-3). Ann Oncol. 2020;31(suppl 4):S704. doi:10.1016/j.annonc.2020.08.1139
Curigliano G, Gelderblom H, Mach N, et al. Phase I/Ib clinical trial of sabatolimab, an anti-TIM-3 antibody, alone and in combination with spartalizumab, an anti-PD-1 antibody, in advanced solid tumors. Clin Cancer Res. 2021;27(13):3620-3629. doi:10.1158/1078-0432.CCR-20-4746
Chocarro L, Blanco E, Zuazo M, et al. Understanding LAG-3 signaling. Int J Mol Sci. 2021;22(10):5282. doi:10.3390/ijms22105282
Wei T, Zhang J, Qin Y, et al. Increased expression of immunosuppressive molecules on intratumoral and circulating regulatory T cells in non-small-cell lung cancer patients. Am J Cancer Res. 2015;5(7):2190-2201.
He Y, Yu H, Rozeboom L, et al. LAG-3 protein expression in non-small cell lung cancer and its relationship with PD-1/PD-L1 and tumor-infiltrating lymphocytes. J Thorac Oncol. 2017;12(5):814-823. doi:10.1016/j.jtho.2017.01.019
Burova E, Hermann A, Dai J, et al. Preclinical development of the anti-LAG-3 antibody REGN3767: characterization and activity in combination with the anti-PD-1 antibody cemiplimab in human PD-1xLAG-3-knockin mice. Mol Cancer Therapeut. 2019;18(11):2051-2062. doi:10.1158/1535-7163.MCT-18-1376
Ghosh S, Sharma G, Travers J, et al. TSR-033, a novel therapeutic antibody targeting LAG-3, enhances T-cell function and the activity of PD-1 blockade in vitro and in vivo. Mol Cancer Therapeut. 2019;18(3):632-641. doi:10.1158/1535-7163.MCT-18-0836
Huang RY, Eppolito C, Lele S, Shrikant P, Matsuzaki J, Odunsi K. LAG3 and PD1 co-inhibitory molecules collaborate to limit CD8+ T cell signaling and dampen antitumor immunity in a murine ovarian cancer model. Oncotarget. 2015;6(29):27359-27777. doi:10.18632/oncotarget.4751
Yu X, Huang X, Chen X, et al. Characterization of a novel anti-human lymphocyte activation gene 3 (LAG-3) antibody for cancer immunotherapy. MAbs. 2019;11(6):1139-1148. doi:10.1080/19420862.2019.1629239
Tawbi HA, Schadendorf D, Lipson EJ, et al. Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N Engl J Med. 2022;386(1):24-34. doi:10.1056/NEJMoa2109970
US Food and Drug Administration. FDA approves Opdualag for unresectable or metastatic melanoma; 2022. Accessed March, 2022. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-opdualag-unresectable-or-metastatic-melanoma
Chen PL, Roh W, Reuben A, et al. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov. 2016;6(8):827-837. doi:10.1158/2159-8290.Cd-15-1545
Maleki Vareki S. High and low mutational burden tumors versus immunologically hot and cold tumors and response to immune checkpoint inhibitors. J Immunother Cancer. 2018;6(1):157. doi:10.1186/s40425-018-0479-7
Yu Y, Zeng D, Ou Q, et al. Association of survival and immune-related biomarkers with immunotherapy in patients with non-small cell lung cancer: a meta-analysis and individual patient-level analysis. JAMA Netw Open. 2019;2(7):e196879. doi:10.1001/jamanetworkopen.2019.6879
Walsh RJ, Soo RA. Resistance to immune checkpoint inhibitors in non-small cell lung cancer: biomarkers and therapeutic strategies. Therapeut Adv Med Oncol. 2020;12:1758835920937902. doi:10.1177/1758835920937902
Arlauckas SP, Garris CS, Kohler RH, et al. In vivo imaging reveals a tumor-associated macrophage-mediated resistance pathway in anti-PD-1 therapy. Sci Transl Med. 2017;9(389):eaal3604. doi:10.1126/scitranslmed.aal3604
Kim CG, Jang M, Kim Y, et al. VEGF-A drives TOX-dependent T cell exhaustion in anti-PD-1-resistant microsatellite stable colorectal cancers. Sci Immunol. 2019;4(41):eaay0555. doi:10.1126/sciimmunol.aay0555
Kim K, Skora AD, Li Z, et al. Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells. Proc Natl Acad Sci U S A. 2014;111(32):11774-11779. doi:10.1073/pnas.1410626111
Socinski MA, Nishio M, Jotte RM, et al. IMpower150 final overall survival analyses for atezolizumab plus bevacizumab and chemotherapy in first-line metastatic nonsquamous NSCLC. J Thorac Oncol. 2021;16(11):1909-1924. doi:10.1016/j.jtho.2021.07.009
Herbst RS, Arkenau HT, Bendell J, et al. Phase 1 expansion cohort of ramucirumab plus pembrolizumab in advanced treatment-naive NSCLC. J Thorac Oncol. 2021;16(2):289-298. doi:10.1016/j.jtho.2020.10.004
Yang JCH, Luft A, De La Mora Jiménez E, et al. 120O Pembrolizumab (Pembro) with or without lenvatinib (Lenva) in first-line metastatic NSCLC with PD-L1 TPS ≥1% (LEAP-007): A phase III, randomized, double-blind study. Ann Oncol. 2021;32(suppl 7):S1429-S1430. doi:10.1016/j.annonc.2021.10.139
Zhou C, Wang Y, Zhao J, et al. Efficacy and biomarker analysis of camrelizumab in combination with apatinib in patients with advanced nonsquamous NSCLC previously treated with chemotherapy. Clin Cancer Res. 2021;27(5):1296-1304. doi:10.1158/1078-0432.Ccr-20-3136
Du W, Huang H, Sorrelle N, Brekken RA. Sitravatinib potentiates immune checkpoint blockade in refractory cancer models. JCI Insight. 2018;3(21):e124184. doi:10.1172/jci.insight.124184
Leal TA, Berz D, Rybkin I, et al. 1191O MRTX-500: phase II trial of sitravatinib (sitra) + nivolumab (nivo) in patients (pts) with non-squamous (NSQ) non-small cell lung cancer (NSCLC) progressing on or after prior checkpoint inhibitor (CPI) therapy. Ann Oncol. 2021;32(suppl 7):S949. doi:10.1016/j.annonc.2021.08.1796
Zhou Q, Yu X, Gao B, et al. 1280P sitravatinib + tislelizumab in patients with metastatic non-small cell lung cancer (NSCLC). Ann Oncol. 2021;32(suppl 7):S996-S997. doi:10.1016/j.annonc.2021.08.1882
Karasaki T, Qiang G, Anraku M, et al. High CCR4 expression in the tumor microenvironment is a poor prognostic indicator in lung adenocarcinoma. J Thorac Dis. 2018;10(8):4741-4750. doi:10.21037/jtd.2018.07.45
Yoshie O, Matsushima K. CCR4 and its ligands: from bench to bedside. Int Immunol. 2014;27(1):11-20. doi:10.1093/intimm/dxu079
Doi T, Muro K, Ishii H, et al. A phase I study of the anti-CC chemokine receptor 4 antibody, mogamulizumab, in combination with nivolumab in patients with advanced or metastatic solid tumors. Clin Cancer Res. 2019;25(22):6614-6622. doi:10.1158/1078-0432.Ccr-19-1090
Hong DS, Rixe O, Chiu VK, et al. Mogamulizumab in combination with nivolumab in a phase I/II study of patients with locally advanced or metastatic solid tumors. Clin Cancer Res. 2022;28(3):479-488. doi:10.1158/1078-0432.CCR-21-2781
Zhang W, Wang H, Sun M, et al. CXCL5/CXCR2 axis in tumor microenvironment as potential diagnostic biomarker and therapeutic target. Cancer Commun (Lond). 2020;40(2-3):69-80. doi:10.1002/cac2.12010
Highfill SL, Cui Y, Giles AJ, et al. Disruption of CXCR2-mediated MDSC tumor trafficking enhances anti-PD1 efficacy. Sci Transl Med. 2014;6(237):237ra67. doi:10.1126/scitranslmed.3007974
Merck. Merck Announces Update on the INTR@PID Clinical Program Including Lung 037 Study. Accessed September, 2022. https://www.merckgroup.com/en/news/bintrafusp-alfa-037-update-20-01-2021.html
Cho BC, Lee KH, Han J-Y, et al. 363 Vactosertib and durvalumab as second or later line treatment for PD-L1 positive non-small cell lung cancer: interim result. J Immunother Cancer. 2020;8(suppl 3):A222. doi:10.1136/jitc-2020-SITC2020.0363
Novartis. Novartis top-line results for CANOPY-1 Phase III study support further evaluation of canakinumab in lung cancer; 2021. Accessed August 30, 2022. https://www.novartis.com/news/media-releases/novartis-top-line-results-canopy-1-phase-iii-study-support-further-evaluation-canakinumab-lung-cancer
Franco R, Rivas-Santisteban R, Navarro G, Reyes-Resina I. Adenosine receptor antagonists to combat cancer and to boost anti-cancer chemotherapy and immunotherapy. Cells. 2021;10(11):2831. doi:10.3390/cells10112831
Willingham SB, Hotson AN, Miller RA. Targeting the A2AR in cancer; early lessons from the clinic. Curr Opin Pharmacol. 2020;53:126-133. doi:10.1016/j.coph.2020.08.003
Wu Z, Cui P, Tao H, et al. The synergistic effect of PARP inhibitors and immune checkpoint inhibitors. Clin Med Insights Oncol. 2021;15:1179554921996288. doi:10.1177/1179554921996288
Barnieh FM, Loadman PM, Falconer RA. Progress towards a clinically-successful ATR inhibitor for cancer therapy. Curr Res Pharmacol Drug Discov. 2021;2:100017. doi:10.1016/j.crphar.2021.100017
Fong L, Forde PM, Powderly JD, et al. Safety and clinical activity of adenosine A2a receptor (A2aR) antagonist, CPI-444, in anti-PD1/PDL1 treatment-refractory renal cell (RCC) and non-small cell lung cancer (NSCLC) patients. J Clin Oncol. 2017;35(suppl 15):3004. doi:10.1200/JCO.2017.35.15_suppl.3004
Felip E, Lim FL, Johnson M, et al. 1315P Phase Ib/II open-label, randomised evaluation of atezolizumab (atezo) + CPI-444 vs docetaxel as second/third-line therapy in MORPHEUS-NSCLC (non-small cell lung cancer). Ann Oncol. 2020;31(suppl 4):S850. doi:10.1016/j.annonc.2020.08.1629
Lin CC, Joerger M, Grell P, et al. Continuous vs intermittent adenosine 2A receptor (A2AR) inhibition in preclinical colon cancer (CC) models and in a phase (Ph) II study of taminadenant (NIR178) + spartalizumab (PDR001) in patients (pts) with non-small cell lung cancer (NSCLC). Eur J Cancer. 2020;138(suppl 2):S12-S13. doi:10.1016/S0959-8049(20)31098-4
Spira AI, Conkling PR, Johnson ML, et al. ARC-4 study: efficacy and safety of AB928 plus carboplatin, pemetrexed and a PD-1 antibody in participants with metastatic non-small cell lung cancer (mNSCLC). J Clin Oncol. 2020;38(suppl 15):e21659. doi:10.1200/JCO.2020.38.15_suppl.e21659
Tu E, McGlinchey K, Wang J, et al. Anti-PD-L1 and anti-CD73 combination therapy promotes T cell response to EGFR-mutated NSCLC. JCI Insight. 2022;7(3):e142843. doi:10.1172/jci.insight.142843
Besse B, Awad M, Forde P, et al. OA07.08 HUDSON: an open-label, multi-drug, biomarker-directed, phase II platform study in patients with NSCLC, who progressed on anti-PD(L)1 therapy. J Thorac Oncol. 2021;16(3):S118-S119. doi:10.1016/j.jtho.2021.01.299
Martinez-Marti A, Majem M, Barlesi F, et al. LBA42 - COAST: an open-label, randomised, phase II platform study of durvalumab alone or in combination with novel agents in patients with locally advanced, unresectable, stage III NSCLC. Ann Oncol. 2021;21(suppl 5):S1320. doi:10.1016/annonc/annonc741
Terry S, Dalban C, Rioux-Leclercq N, et al. Association of AXL and PD-L1 expression with clinical outcomes in patients with advanced renal cell carcinoma treated with PD-1 blockade. Clin Cancer Res. 2021;27(24):6749-6760. doi:10.1158/1078-0432.CCR-21-0972
Zhu C, Wei Y, Wei X. AXL receptor tyrosine kinase as a promising anti-cancer approach: functions, molecular mechanisms and clinical applications. Mol Cancer. 2019;18(1):153. doi:10.1186/s12943-019-1090-3
Spicer J, Helland Å, Carcereny E, et al. 362 A PhII study of bemcentinib, a first-in-class selective AXL kinase inhibitor, in combination with pembrolizumab in pts with previously-treated advanced NSCLC: updated clinical & translational analysis. J Immunother Cancer. 2020;8(suppl 3):A221. doi:10.1136/jitc-2020-SITC2020.0362
Li H, Liu Z, Liu L, et al. 602 AXL targeting with bemcentinb restores PD-1 blockade sensitivity of STK11/LKB1 mutant NSCLC through innate immune cell mediated expansion of TCF1+ CD8 T cells. J Immunother Cancer. 2021;9(suppl 2):A632. doi:10.1136/jitc-2021-SITC2021.602
Shin DS, Zaretsky JM, Escuin-Ordinas H, et al. Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov. 2017;7(2):188-201. doi:10.1158/2159-8290.Cd-16-1223
Moore E, Clavijo PE, Davis R, et al. Established T cell-inflamed tumors rejected after adaptive resistance was reversed by combination STING activation and PD-1 pathway blockade. Cancer Immunol Res. 2016;4(12):1061-1071. doi:10.1158/2326-6066.Cir-16-0104
Fu J, Kanne DB, Leong M, et al. STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade. Sci Transl Med. 2015;7(283):283ra52. doi:10.1126/scitranslmed.aaa4306
Nakamura T, Sato T, Endo R, et al. STING agonist loaded lipid nanoparticles overcome anti-PD-1 resistance in melanoma lung metastasis via NK cell activation. J Immunother Cancer. 2021;9(7):e002852. doi:10.1136/jitc-2021-002852
Pan B-S, Perera SA, Piesvaux JA, et al. An orally available non-nucleotide STING agonist with antitumor activity. Science. 2020;369(6506):eaba6098. doi:10.1126/science.aba6098