Highly-twisted states of light from a high quality factor photonic crystal ring.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
27 Feb 2023
27 Feb 2023
Historique:
received:
27
07
2022
accepted:
08
02
2023
entrez:
27
2
2023
pubmed:
28
2
2023
medline:
28
2
2023
Statut:
epublish
Résumé
Twisted light with orbital angular momentum (OAM) has been extensively studied for applications in quantum and classical communications, microscopy, and optical micromanipulation. Ejecting high angular momentum states of a whispering gallery mode (WGM) microresonator through a grating-assisted mechanism provides a scalable, chip-integrated solution for OAM generation. However, demonstrated OAM microresonators have exhibited a much lower quality factor (Q) than conventional WGM resonators (by >100×), and an understanding of the limits on Q has been lacking. This is crucial given the importance of Q in enhancing light-matter interactions. Moreover, though high-OAM states are often desirable, the limits on what is achievable in a microresonator are not well understood. Here, we provide insight on these two questions, through understanding OAM from the perspective of mode coupling in a photonic crystal ring and linking it to coherent backscattering between counter-propagating WGMs. In addition to demonstrating high-Q (10
Identifiants
pubmed: 36849526
doi: 10.1038/s41467-023-36589-8
pii: 10.1038/s41467-023-36589-8
pmc: PMC9971168
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1119Informations de copyright
© 2023. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.
Références
Science. 2015 Feb 27;347(6225):964-6
pubmed: 25636796
Science. 2020 May 15;368(6492):760-763
pubmed: 32409473
Nat Commun. 2020 Aug 14;11(1):4099
pubmed: 32796838
Phys Rev Lett. 2009 Aug 21;103(8):083602
pubmed: 19792729
Science. 2012 Oct 19;338(6105):363-6
pubmed: 23087243
Proc Natl Acad Sci U S A. 2016 Nov 29;113(48):13642-13647
pubmed: 27856742
Phys Rev Lett. 2009 Jul 3;103(1):013601
pubmed: 19659145
Nat Commun. 2014 Sep 17;5:4856
pubmed: 25229882
Nat Nanotechnol. 2022 Jun;17(6):583-589
pubmed: 35449411
Nat Nanotechnol. 2020 Nov;15(11):948-955
pubmed: 32958936
Science. 2016 Jul 29;353(6298):464-7
pubmed: 27471299
Photonics Res. 2020;8(11):
pubmed: 34815982
Science. 2012 Nov 2;338(6107):640-3
pubmed: 23118185
Nat Commun. 2019 Jul 19;10(1):2986
pubmed: 31324755
Science. 2018 Aug 10;361(6402):
pubmed: 30093576
Opt Express. 2015 Feb 23;23(4):5335-47
pubmed: 25836565
Opt Express. 2019 Jan 7;27(1):34-44
pubmed: 30645356
Phys Rev A. 1992 Jun 1;45(11):8185-8189
pubmed: 9906912
Phys Rev Lett. 2005 Sep 30;95(14):143904
pubmed: 16241656
Nature. 2003 Aug 14;424(6950):839-46
pubmed: 12917698
J Res Natl Inst Stand Technol. 2016 Oct 19;121:464-475
pubmed: 34434635
Sci Rep. 2015 May 19;5:10148
pubmed: 25988501
Opt Express. 2004 Jul 26;12(15):3548-53
pubmed: 19483884
Light Sci Appl. 2019 Oct 2;8:90
pubmed: 31645934
Nat Nanotechnol. 2021 Mar;16(3):302-307
pubmed: 33432207