Regulatory networks driving expression of genes critical for glioblastoma are controlled by the transcription factor c-Jun and the pre-existing epigenetic modifications.

Chromatin accessibility DNA binding DNA methylation Gene expression Glioblastoma Transcription factors Transcriptional deregulation

Journal

Clinical epigenetics
ISSN: 1868-7083
Titre abrégé: Clin Epigenetics
Pays: Germany
ID NLM: 101516977

Informations de publication

Date de publication:
27 02 2023
Historique:
received: 10 11 2022
accepted: 13 02 2023
entrez: 28 2 2023
pubmed: 1 3 2023
medline: 3 3 2023
Statut: epublish

Résumé

Glioblastoma (GBM, WHO grade IV) is an aggressive, primary brain tumor. Despite extensive tumor resection followed by radio- and chemotherapy, life expectancy of GBM patients did not improve over decades. Several studies reported transcription deregulation in GBMs, but regulatory mechanisms driving overexpression of GBM-specific genes remain largely unknown. Transcription in open chromatin regions is directed by transcription factors (TFs) that bind to specific motifs, recruit co-activators/repressors and the transcriptional machinery. Identification of GBM-related TFs-gene regulatory networks may reveal new and targetable mechanisms of gliomagenesis. We predicted TFs-regulated networks in GBMs in silico and intersected them with putative TF binding sites identified in the accessible chromatin in human glioma cells and GBM patient samples. The Cancer Genome Atlas and Glioma Atlas datasets (DNA methylation, H3K27 acetylation, transcriptomic profiles) were explored to elucidate TFs-gene regulatory networks and effects of the epigenetic background. In contrast to the majority of tumors, c-Jun expression was higher in GBMs than in normal brain and c-Jun binding sites were found in multiple genes overexpressed in GBMs, including VIM, FOSL2 or UPP1. Binding of c-Jun to the VIM gene promoter was stronger in GBM-derived cells than in cells derived from benign glioma as evidenced by gel shift and supershift assays. Regulatory regions of the majority of c-Jun targets have distinct DNA methylation patterns in GBMs as compared to benign gliomas, suggesting the contribution of DNA methylation to the c-Jun-dependent gene expression. GBM-specific TFs-gene networks identified in GBMs differ from regulatory pathways attributed to benign brain tumors and imply a decisive role of c-Jun in controlling genes that drive glioma growth and invasion as well as a modulatory role of DNA methylation.

Sections du résumé

BACKGROUND
Glioblastoma (GBM, WHO grade IV) is an aggressive, primary brain tumor. Despite extensive tumor resection followed by radio- and chemotherapy, life expectancy of GBM patients did not improve over decades. Several studies reported transcription deregulation in GBMs, but regulatory mechanisms driving overexpression of GBM-specific genes remain largely unknown. Transcription in open chromatin regions is directed by transcription factors (TFs) that bind to specific motifs, recruit co-activators/repressors and the transcriptional machinery. Identification of GBM-related TFs-gene regulatory networks may reveal new and targetable mechanisms of gliomagenesis.
RESULTS
We predicted TFs-regulated networks in GBMs in silico and intersected them with putative TF binding sites identified in the accessible chromatin in human glioma cells and GBM patient samples. The Cancer Genome Atlas and Glioma Atlas datasets (DNA methylation, H3K27 acetylation, transcriptomic profiles) were explored to elucidate TFs-gene regulatory networks and effects of the epigenetic background. In contrast to the majority of tumors, c-Jun expression was higher in GBMs than in normal brain and c-Jun binding sites were found in multiple genes overexpressed in GBMs, including VIM, FOSL2 or UPP1. Binding of c-Jun to the VIM gene promoter was stronger in GBM-derived cells than in cells derived from benign glioma as evidenced by gel shift and supershift assays. Regulatory regions of the majority of c-Jun targets have distinct DNA methylation patterns in GBMs as compared to benign gliomas, suggesting the contribution of DNA methylation to the c-Jun-dependent gene expression.
CONCLUSIONS
GBM-specific TFs-gene networks identified in GBMs differ from regulatory pathways attributed to benign brain tumors and imply a decisive role of c-Jun in controlling genes that drive glioma growth and invasion as well as a modulatory role of DNA methylation.

Identifiants

pubmed: 36850002
doi: 10.1186/s13148-023-01446-4
pii: 10.1186/s13148-023-01446-4
pmc: PMC9972689
doi:

Substances chimiques

Chromatin 0
Proto-Oncogene Proteins c-jun 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

29

Informations de copyright

© 2023. The Author(s).

Références

Nucleic Acids Res. 2019 Jul 2;47(W1):W556-W560
pubmed: 31114875
Stem Cells. 2014 Aug;32(8):2033-47
pubmed: 24831540
Trends Cell Biol. 2020 Jun;30(6):491-500
pubmed: 32413318
Nat Commun. 2021 Jun 15;12(1):3621
pubmed: 34131149
PeerJ. 2018 Jun 15;6:e5062
pubmed: 29922517
Appl Immunohistochem Mol Morphol. 2018 May/Jun;26(5):337-344
pubmed: 27556820
Hum Pathol. 2006 Jun;37(6):668-74
pubmed: 16733206
Elife. 2017 Feb 10;6:
pubmed: 28186491
J Mol Med (Berl). 2014 Aug;92(8):811-23
pubmed: 24996520
J Exp Clin Cancer Res. 2020 Sep 11;39(1):184
pubmed: 32917236
BMC Bioinformatics. 2009 Jul 27;10:232
pubmed: 19635165
Front Microbiol. 2018 Jan 15;8:2686
pubmed: 29379481
Bioinformatics. 2014 Apr 1;30(7):923-30
pubmed: 24227677
Oncol Lett. 2016 Jan;11(1):75-80
pubmed: 26870170
Clin Cancer Res. 1995 Feb;1(2):207-14
pubmed: 9815975
Nucleic Acids Res. 2019 Jan 8;47(D1):D745-D751
pubmed: 30407521
Bioinformatics. 2011 Apr 1;27(7):1017-8
pubmed: 21330290
Cell Rep. 2018 Apr 10;23(2):637-651
pubmed: 29642018
Dev Cell. 2019 Feb 25;48(4):539-553.e6
pubmed: 30713070
Cancers (Basel). 2020 Aug 15;12(8):
pubmed: 32824207
OMICS. 2012 May;16(5):284-7
pubmed: 22455463
Arthritis Res Ther. 2008;10(1):201
pubmed: 18226189
Bioinformatics. 2014 Aug 1;30(15):2114-20
pubmed: 24695404
Genome Biol. 2014;15(12):550
pubmed: 25516281
Genome Biol. 2015 Jan 27;16:16
pubmed: 25622821
Carcinogenesis. 2014 Jan;35(1):14-23
pubmed: 23996929
PLoS One. 2013 Jul 02;8(7):e67750
pubmed: 23844083
Oncogene. 2011 Jan 27;30(4):457-70
pubmed: 20856200
J Cell Mol Med. 2019 Nov;23(11):7438-7448
pubmed: 31496029
Oncogene. 2014 Apr 10;33(15):2004-10
pubmed: 23644657
Biochem Soc Trans. 2008 Oct;36(Pt 5):864-7
pubmed: 18793152
Cell. 2013 Mar 14;152(6):1237-51
pubmed: 23498934
Cell Death Differ. 2007 Feb;14(2):218-29
pubmed: 16676006
CNS Neurosci Ther. 2020 Jul;26(7):741-753
pubmed: 32064771
Genome Res. 2018 Feb 2;:
pubmed: 29429977
Oncogene. 2003 Oct 23;22(48):7617-27
pubmed: 14576824
BMC Cancer. 2015 Dec 16;15:952
pubmed: 26673168
Oncogene. 2003 Dec 4;22(55):8891-901
pubmed: 14654785
Nat Commun. 2017 Jun 01;8:15080
pubmed: 28569747
Int J Oncol. 2015 Mar;46(3):1109-20
pubmed: 25502147
Oncotarget. 2014 Aug 15;5(15):6003-14
pubmed: 25153720
Nucleic Acids Res. 2014 Jan;42(Database issue):D749-55
pubmed: 24316576
Cancer Cell. 2009 Apr 7;15(4):341-52
pubmed: 19345332
Nature. 2012 Sep 6;489(7414):75-82
pubmed: 22955617
Clin Cancer Res. 2010 Feb 1;16(3):800-13
pubmed: 20103663
Essays Biochem. 2019 Dec 20;63(6):727-741
pubmed: 31755929
Nucleic Acids Res. 2018 Jan 4;46(D1):D252-D259
pubmed: 29140464
Epigenetics Chromatin. 2022 Mar 24;15(1):10
pubmed: 35331302
Genome Biol. 2012 Oct 03;13(10):R87
pubmed: 23034086
Neuro Oncol. 2018 Apr 9;20(5):608-620
pubmed: 29036500
Nat Methods. 2012 Mar 04;9(4):357-9
pubmed: 22388286
Bioinformatics. 2015 Jul 15;31(14):2382-3
pubmed: 25765347
EMBO J. 2000 May 2;19(9):2056-68
pubmed: 10790372
Cancers (Basel). 2020 Oct 11;12(10):
pubmed: 33050631
Nat Rev Neurol. 2019 Jul;15(7):405-417
pubmed: 31227792
Front Cell Dev Biol. 2021 Nov 16;9:787339
pubmed: 34869389
Cell. 1988 Dec 2;55(5):875-85
pubmed: 3142689
Oncotarget. 2015 Jan 20;6(2):862-73
pubmed: 25528765
Cancer Res. 2010 Oct 1;70(19):7500-13
pubmed: 20858720
Biosci Rep. 2019 Mar 15;39(3):
pubmed: 30824562
Bioinformatics. 2013 Jan 1;29(1):15-21
pubmed: 23104886
Nat Rev Genet. 2011 Jul 12;12(8):554-64
pubmed: 21747402
Oncogene. 2001 Apr 30;20(19):2390-400
pubmed: 11402335
Exp Mol Med. 2020 Aug;52(8):1326-1340
pubmed: 32788653
Proc Natl Acad Sci U S A. 2018 Jul 24;115(30):E7222-E7230
pubmed: 29987030
J Transl Med. 2018 Jun 20;16(1):170
pubmed: 29925392
Nat Commun. 2021 Feb 26;12(1):1307
pubmed: 33637709
Genome Res. 2013 Aug;23(8):1307-18
pubmed: 23554463
Sci Rep. 2016 Dec 09;6:38723
pubmed: 27934912
Neoplasia. 2005 Sep;7(9):824-37
pubmed: 16229805
Cancer Res. 2004 Oct 1;64(19):7011-21
pubmed: 15466194
Medicine (Baltimore). 2021 Jan 22;100(3):e23513
pubmed: 33545929
BMC Genomics. 2019 Feb 1;20(1):102
pubmed: 30709331
Acta Neuropathol. 2016 Jun;131(6):803-20
pubmed: 27157931
Epigenetics. 2013 Feb;8(2):149-56
pubmed: 23291739

Auteurs

Adria-Jaume Roura (AJ)

Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland.

Paulina Szadkowska (P)

Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland.
Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland.

Katarzyna Poleszak (K)

Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland.

Michal J Dabrowski (MJ)

Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland.

Aleksandra Ellert-Miklaszewska (A)

Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland.

Kamil Wojnicki (K)

Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland.

Iwona A Ciechomska (IA)

Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland.

Karolina Stepniak (K)

Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland.

Bozena Kaminska (B)

Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland.

Bartosz Wojtas (B)

Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland. b.wojtas@nencki.edu.pl.
Laboratory of Sequencing, Nencki Institute of Experimental Biology, ul. Ludwika Pasteura 3, 02-093, Warsaw, Poland. b.wojtas@nencki.edu.pl.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH