Impact of Anatomical Variability on Sensitivity Profile in fNIRS-MRI Integration.

Monte Carlo simulation anatomical variability functional near-infrared spectroscopy magnetic resonance imaging multimodal imaging sensitivity estimate

Journal

Sensors (Basel, Switzerland)
ISSN: 1424-8220
Titre abrégé: Sensors (Basel)
Pays: Switzerland
ID NLM: 101204366

Informations de publication

Date de publication:
13 Feb 2023
Historique:
received: 23 12 2022
revised: 06 02 2023
accepted: 07 02 2023
entrez: 28 2 2023
pubmed: 1 3 2023
medline: 3 3 2023
Statut: epublish

Résumé

Functional near-infrared spectroscopy (fNIRS) is an important non-invasive technique used to monitor cortical activity. However, a varying sensitivity of surface channels vs. cortical structures may suggest integrating the fNIRS with the subject-specific anatomy (SSA) obtained from routine MRI. Actual processing tools permit the computation of the SSA forward problem (i.e., cortex to channel sensitivity) and next, a regularized solution of the inverse problem to map the fNIRS signals onto the cortex. The focus of this study is on the analysis of the forward problem to quantify the effect of inter-subject variability. Thirteen young adults (six males, seven females, age 29.3 ± 4.3) underwent both an MRI scan and a motor grasping task with a continuous wave fNIRS system of 102 measurement channels with optodes placed according to a 10/5 system. The fNIRS sensitivity profile was estimated using Monte Carlo simulations on each SSA and on three major atlases (i.e., Colin27, ICBM152 and FSAverage) for comparison. In each SSA, the average sensitivity curves were obtained by aligning the 102 channels and segmenting them by depth quartiles. The first quartile (depth < 11.8 (0.7) mm, median (IQR)) covered 0.391 (0.087)% of the total sensitivity profile, while the second one (depth < 13.6 (0.7) mm) covered 0.292 (0.009)%, hence indicating that about 70% of the signal was from the gyri. The sensitivity bell-shape was broad in the source-detector direction (20.953 (5.379) mm FWHM, first depth quartile) and steeper in the transversal one (6.082 (2.086) mm). The sensitivity of channels vs. different cortical areas based on SSA were analyzed finding high dispersions among subjects and large differences with atlas-based evaluations. Moreover, the inverse cortical mapping for the grasping task showed differences between SSA and atlas based solutions. In conclusion, integration with MRI SSA can significantly improve fNIRS interpretation.

Identifiants

pubmed: 36850685
pii: s23042089
doi: 10.3390/s23042089
pmc: PMC9962997
pii:
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Références

Neuroimage. 2015 May 1;111:338-49
pubmed: 25724757
Neurophotonics. 2018 Jan;5(1):011009
pubmed: 28948192
Appl Opt. 2005 Apr 1;44(10):1957-68
pubmed: 15813532
Neurophotonics. 2015 Apr;2(2):020801
pubmed: 26157991
Neuroimage. 2006 Jul 15;31(4):1475-86
pubmed: 16650778
Opt Express. 2005 Jul 11;13(14):5513-21
pubmed: 19498547
Neuroimage. 2011 Feb 14;54(4):2808-21
pubmed: 21047559
Neuroimage. 2007 Feb 15;34(4):1600-11
pubmed: 17207640
Neurophotonics. 2016 Jul;3(3):031402
pubmed: 26958576
Neurophysiol Clin. 2018 Dec;48(6):337-359
pubmed: 30487063
Neuroimage. 2014 Jan 15;85 Pt 1:535-46
pubmed: 23558099
Rev Neurosci. 2021 Aug 30;33(2):213-226
pubmed: 34461010
Neuroimage. 2011 Jan 1;54(1):313-27
pubmed: 20656036
Neuroimage. 2010 Oct 15;53(1):1-15
pubmed: 20547229
Neurophotonics. 2017 Oct;4(4):041411
pubmed: 28840162
Neuroimage. 2012 Sep;62(3):1999-2006
pubmed: 22634215
Neuroimage. 2014 Jan 15;85 Pt 1:1-5
pubmed: 24321364
Neuroimage. 2011 Jan 15;54(2):919-27
pubmed: 20851195
J Biomed Opt. 2014 Apr;19(4):040801
pubmed: 24781586
Comput Intell Neurosci. 2011;2011:879716
pubmed: 21584256
J Biomed Opt. 2012 May;17(5):056002
pubmed: 22612125
Sci Rep. 2018 Feb 20;8(1):3341
pubmed: 29463928
Neuroimage. 2014 Jan 15;85 Pt 1:166-80
pubmed: 23859922
Curr Opin Biomed Eng. 2017 Dec;4:78-86
pubmed: 29457144
Neurophotonics. 2020 Jul;7(3):035008
pubmed: 32995360
Hum Brain Mapp. 1999;8(4):272-84
pubmed: 10619420
Biomed Opt Express. 2015 Feb 27;6(3):1074-89
pubmed: 25798327
Appl Opt. 2009 Apr 1;48(10):D280-98
pubmed: 19340120
Clin Neuropsychol. 2007 Jan;21(1):9-37
pubmed: 17366276
J Neurosci Methods. 2018 Nov 1;309:91-108
pubmed: 30107210
Hum Brain Mapp. 2021 Oct 15;42(15):4823-4843
pubmed: 34342073
Neuroimage. 2010 Jan 1;49(1):561-7
pubmed: 19643185
Front Neurol. 2019 Feb 05;10:58
pubmed: 30804877
Neurophotonics. 2016 Jul;3(3):031405
pubmed: 27054143
Front Neurosci. 2021 Mar 26;15:629323
pubmed: 33841079
Commun Numer Methods Eng. 2008 Aug 15;25(6):711-732
pubmed: 20182646
Opt Express. 2002 Feb 11;10(3):159-70
pubmed: 19424345
Nat Photonics. 2014 Jun;8(6):448-454
pubmed: 25083161
Neurorehabil Neural Repair. 2017 May;31(5):402-412
pubmed: 28196453
J Biomed Opt. 2016 Sep;21(9):091312
pubmed: 27420810
Neuroimage. 2014 Jan 15;85 Pt 1:136-49
pubmed: 23660029
Diagnostics (Basel). 2020 Aug 12;10(8):
pubmed: 32806516
J Neurol. 2018 Jun;265(6):1393-1401
pubmed: 29627940
Opt Express. 2009 Oct 26;17(22):20178-90
pubmed: 19997242
Neuroimage. 2019 Jan 1;184:171-179
pubmed: 30217544
PLoS One. 2013 Aug 01;8(8):e66319
pubmed: 23936292
Neuroimage. 2014 Jan 15;85 Pt 1:181-91
pubmed: 23639260
Front Neurosci. 2020 Jul 09;14:724
pubmed: 32742257
Neurophotonics. 2016 Jul;3(3):031414
pubmed: 27429995
Rev Sci Instrum. 2019 May;90(5):051101
pubmed: 31153254
Neurophotonics. 2021 Apr;8(2):025010
pubmed: 35106319
Biomed Opt Express. 2018 Jun 07;9(7):2994-3016
pubmed: 30619642
Neuroimage. 2012 Jul 16;61(4):1120-8
pubmed: 22330315
J Biomed Opt. 2014 Feb;19(2):026010
pubmed: 24525860
Neuroimage. 2003 Apr;18(4):865-79
pubmed: 12725763
J Biomed Opt. 2013 Oct;18(10):105004
pubmed: 24121731
Front Hum Neurosci. 2017 Aug 18;11:419
pubmed: 28867998
Neuroimage. 2014 Jan 15;85 Pt 1:92-103
pubmed: 23891905
IEEE Trans Med Imaging. 1998 Jun;17(3):463-8
pubmed: 9735909

Auteurs

Augusto Bonilauri (A)

Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy.

Francesca Sangiuliano Intra (F)

Faculty of Education, Free University of Bolzano-Bozen, 39042 Brixen, Italy.

Francesca Baglio (F)

IRCCS Fondazione Don Carlo Gnocchi ONLUS, CADITER, 20148 Milan, Italy.

Giuseppe Baselli (G)

Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH