Characterization of Kv1.2-mediated outward current in TRIP8b-deficient mice.
K+ current
Kv channel blocker
TRIP8b
action potential firing
oocytes
thalamus
Journal
Biological chemistry
ISSN: 1437-4315
Titre abrégé: Biol Chem
Pays: Germany
ID NLM: 9700112
Informations de publication
Date de publication:
28 03 2023
28 03 2023
Historique:
received:
30
01
2023
accepted:
16
02
2023
pubmed:
1
3
2023
medline:
16
3
2023
entrez:
28
2
2023
Statut:
epublish
Résumé
Tonic current through hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels is influencing neuronal firing properties and channel function is strongly influenced by the brain-specific auxiliary subunit tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b). Since Kv1.2 channels and TRIP8b were also suggested to interact, we assessed brain Kv1.2 mRNA and protein expression as well as the reduction of K
Identifiants
pubmed: 36852869
pii: hsz-2023-0116
doi: 10.1515/hsz-2023-0116
doi:
Substances chimiques
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
291-302Informations de copyright
© 2023 the author(s), published by De Gruyter, Berlin/Boston.
Références
Abbott, G.W. (2012). KCNE2 and the K+ channel. Channels 6: 1–10, https://doi.org/10.4161/chan.19126 .
doi: 10.4161/chan.19126
Alkire, M.T., Asher, C.D., Franciscus, A.M., and Hahn, E.L. (2009). Thalamic microinfusion of antibody to a voltage-gated potassium channel restores consciousness during anesthesia. Anesthesiology 110: 766–773, https://doi.org/10.1097/aln.0b013e31819c461c .
doi: 10.1097/aln.0b013e31819c461c
Budde, T., Mager, R., and Pape, H.-C. (1992). Different types of potassium outward current in relay neurons acutely isolated from the rat lateral geniculate nucleus. Eur. J. Neurosci. 4: 708–722, https://doi.org/10.1111/j.1460-9568.1992.tb00180.x .
doi: 10.1111/j.1460-9568.1992.tb00180.x
Cazzin, C., Piccoli, L., Massagrande, M., Garbati, N., Michielin, F., Knaus, H.G., Ring, C.J.A., Morrison, A.D., Merlo-Pich, E., Rovo, Z., et al.. (2011). rKv1.2 overexpression in the central medial thalamic area decreases caffeine-induced arousal. Gene Brain Behav. 10: 817–827, https://doi.org/10.1111/j.1601-183x.2011.00719.x .
doi: 10.1111/j.1601-183x.2011.00719.x
Decher, N., Bundis, F., Vajna, R., and Steinmeyer, K. (2003). KCNE2 modulates current amplitudes and activation kinetics of HCN4: influence of KCNE family members on HCN4 currents. Pflügers Archiv 446: 633–640, https://doi.org/10.1007/s00424-003-1127-7 .
doi: 10.1007/s00424-003-1127-7
Decher, N., Streit, A.K., Rapedius, M., Netter, M.F., Marzian, S., Ehling, P., Renigunta, V., Ko, A., Dodel, R.C., Navarro-polanco, R.a, et al.. (2010). RNA editing modulates the binding of drugs and highly unsaturated fatty acids to the open pore of Kv potassium channels. EMBO J. 29: 2101–2113, https://doi.org/10.1038/emboj.2010.88 .
doi: 10.1038/emboj.2010.88
Dodson, P.D. and Forsythe, I.D. (2004). Presynaptic K+ channels: electrifying regulators of synaptic terminal excitability. Trends Neurosci. 27: 210–217, https://doi.org/10.1016/j.tins.2004.02.012 .
doi: 10.1016/j.tins.2004.02.012
Han, Y., Lyman, K.A., Foote, K.M., and Chetkovich, D.M. (2020). The structure and function of TRIP8b, an auxiliary subunit of hyperpolarization-activated cyclic-nucleotide gated channels. Channels 14: 110–122, https://doi.org/10.1080/19336950.2020.1740501 .
doi: 10.1080/19336950.2020.1740501
He, C., Chen, F., Li, B., and Hu, Z. (2014). Neurophysiology of HCN channels: from cellular functions to multiple regulations. Prog. Neurobiol. 112: 1–23, https://doi.org/10.1016/j.pneurobio.2013.10.001 .
doi: 10.1016/j.pneurobio.2013.10.001
Heuermann, R.J., Jaramillo, T.C., Ying, S.-W., Suter, B.A., Lyman, K.A., Han, Y., Lewis, A.S., Hampton, T.G., Shepherd, G.M.G., Goldstein, P.A., et al.. (2016). Reduction of thalamic and cortical Ih by deletion of TRIP8b produces a mouse model of human absence epilepsy. Neurobiol. Dis. 85: 81–92, https://doi.org/10.1016/j.nbd.2015.10.005 .
doi: 10.1016/j.nbd.2015.10.005
Hopkins, W.F. (1998). Toxin and subunit specificity of blocking affinity of three peptide toxins for heteromultimeric, voltage-gated potassium channels expressed in Xenopus oocytes. J. Pharmcol. Exp. Ther. 285: 1051–1060.
Huang, Z., Walker, M.C., and Shah, M.M. (2009). Loss of dendritic HCN1 subunits enhances cortical excitability and epileptogenesis. J. Neurosci. 29: 10979–10988, https://doi.org/10.1523/jneurosci.1531-09.2009 .
doi: 10.1523/jneurosci.1531-09.2009
Kanyshkova, T., Broicher, T., Meuth, S.G., Pape, H.-C., and Budde, T. (2011). A-type K+ currents in intralaminar thalamocortical relay neurons. Pflügers Archiv 461: 545–556, https://doi.org/10.1007/s00424-011-0953-2 .
doi: 10.1007/s00424-011-0953-2
Kanyshkova, T., Meuth, P., Bista, P., Liu, Z., Ehling, P., Caputi, L., Doengi, M., Chetkovich, D.M., Pape, H.C., and Budde, T. (2012). Differential regulation of HCN channel isoform expression in thalamic neurons of epileptic and non-epileptic rat strains. Neurobiol. Dis. 45: 450–461, https://doi.org/10.1016/j.nbd.2011.08.032 .
doi: 10.1016/j.nbd.2011.08.032
Kasten, M.R., Rudy, B., and Anderson, M.P. (2007). Differential regulation of action potential firing in adult murine thalamocortical neurons by Kv3.2, Kv1, and SK potassium and N-type calcium channels. J. Physiol. 584: 565–582, https://doi.org/10.1113/jphysiol.2007.141135 .
doi: 10.1113/jphysiol.2007.141135
Krichmar, J.L., Nasuto, S.J., Scorcioni, R., Washington, S.D., and Ascoli, G.A. (2002). Effects of dendritic morphology on CA3 pyramidal cell electrophysiology: a simulation study. Brain Res. 941: 11–28, https://doi.org/10.1016/s0006-8993(02)02488-5 .
doi: 10.1016/s0006-8993(02)02488-5
Lewis, A.S., Schwartz, E., Chan, C.S., Noam, Y., Shin, M., Wadman, W.J., Surmeier, D.J., Baram, T.Z., Macdonald, R.L., and Chetkovich, D.M. (2009). Alternatively spliced isoforms of TRIP8b differentially control h channel trafficking and function. J. Neurosci. 29: 6250–6265, https://doi.org/10.1523/jneurosci.0856-09.2009 .
doi: 10.1523/jneurosci.0856-09.2009
Lewis, A.S., Vaidya, S.P., Blaiss, C.A., Liu, Z., Stoub, T.R., Brager, D.H., Chen, X., Bender, R.A., Estep, C.M., Popov, A.B., et al.. (2011). Deletion of the hyperpolarization-activated cyclic nucleotide-gated channel auxiliary subunit TRIP8b impairs hippocampal Ih localization and function and promotes antidepressant behavior in mice. J. Neurosci. 31: 7424–7440, https://doi.org/10.1523/jneurosci.0936-11.2011 .
doi: 10.1523/jneurosci.0936-11.2011
Ludwig, A., Budde, T., Stieber, J., Moosmang, S., Wahl, C., Holthoff, K., Langebartels, A., Wotjak, C., Munsch, T., Zong, X., et al.. (2003). Absence epilepsy and sinus dysrhythmia in mice lacking the pacemaker channel HCN2. EMBO J. 22: 216–224, https://doi.org/10.1093/emboj/cdg032 .
doi: 10.1093/emboj/cdg032
Oniani, T., Vinnenberg, L., Chaudhary, R., Schreiber, J.A., Riske, K., Williams, B., Pape, H.-C., White, J.A., Junker, A., Seebohm, G., et al.. (2022). Effects of axonal demyelination, inflammatory cytokines and divalent cation chelators on thalamic HCN channels and oscillatory bursting. Int. J. Mol. Sci. 23: 6285, https://doi.org/10.3390/ijms23116285 .
doi: 10.3390/ijms23116285
Rhodes, K.J., Keilbaugh, S.A., Barrezueta, N.X., Lopez, K.L., and Trimmer, J.S. (1995). Association and colocalization of K+ channel alpha- and beta-subunit polypeptides in rat brain. J. Neurosci. 15: 5360, https://doi.org/10.1523/jneurosci.15-07-05360.1995 .
doi: 10.1523/jneurosci.15-07-05360.1995
Robbins, C.A. and Tempel, B.L. (2012). Kv1.1 and Kv1.2: similar channels, different seizure models. Epilepsia 53: 134–141, https://doi.org/10.1111/j.1528-1167.2012.03484.x .
doi: 10.1111/j.1528-1167.2012.03484.x
Rodrigues, A.R.A., Arantes, E.C., Monje, F., Stühmer, W., and Varanda, W.A. (2003). Tityustoxin-K(alpha) blockade of the voltage-gated potassium channel Kv1.3. Br. J. Pharmacol. 139: 1180–1186, https://doi.org/10.1038/sj.bjp.0705343 .
doi: 10.1038/sj.bjp.0705343
Sánchez-Ponce, D., DeFelipe, J., Garrido, J.J., and Muñoz, A. (2012). Developmental expression of Kv potassium channels at the axon initial segment of cultured hippocampal neurons. PLoS One 7: e48557, https://doi.org/10.1371/journal.pone.0048557 .
doi: 10.1371/journal.pone.0048557
Santoro, B., Hu, L., Liu, H., Saponaro, A., Pian, P., Piskorowski, R.a, Moroni, A., and Siegelbaum, S.a. (2011). TRIP8b regulates HCN1 channel trafficking and gating through two distinct C-terminal interaction sites. J. Neurosci. 31: 4074–4086, https://doi.org/10.1523/jneurosci.5707-10.2011 .
doi: 10.1523/jneurosci.5707-10.2011
Santoro, B., Piskorowski, R.A., Pian, P., Hu, L., Liu, H., and Siegelbaum, S.A. (2009). TRIP8b splice variants form a family of auxiliary subunits that regulate gating and trafficking of HCN channels in the brain. Neuron 62: 802–813, https://doi.org/10.1016/j.neuron.2009.05.009 .
doi: 10.1016/j.neuron.2009.05.009
Santoro, B., Wainger, B.J., and Siegelbaum, S.a. (2004). Regulation of HCN channel surface expression by a novel C-terminal protein-protein interaction. J. Neurosci. 24: 10750–10762, https://doi.org/10.1523/jneurosci.3300-04.2004 .
doi: 10.1523/jneurosci.3300-04.2004
Strutz-Seebohm, N., Gutcher, I., Decher, N., Steinmeyer, K., Lang, F., and Seebohm, G. (2007). Comparison of potent Kv1.5 potassium channel inhibitors reveals the molecular basis for blocking kinetics and binding mode. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 20: 791–800, https://doi.org/10.1159/000110439 .
doi: 10.1159/000110439
Vennekamp, J., Wulff, H., Beeton, C., Calabresi, P.A., Grissmer, S., Hänsel, W., and Chandy, K.G. (2004). Kv1.3-Blocking 5-phenylalkoxypsoralens: a new class of immunomodulators. Mol. Pharmacol. 65: 1364–1374, https://doi.org/10.1124/mol.65.6.1364 .
doi: 10.1124/mol.65.6.1364
Werkman, T.R., Gustafson, T.A., Rogowski, R.S., Blaustein, M.P., and Rogawski, M.A. (1993). Tityustoxin-K alpha, a structurally novel and highly potent K+ channel peptide toxin, interacts with the alpha-dendrotoxin binding site on the cloned Kv1.2 K+ channel. Mol. Pharmacol. 44: 430–436.
Willis, M., Leitner, I., Seppi, K., Trieb, M., Wietzorrek, G., Marksteiner, J., and Knaus, H.G. (2018). Shaker-related voltage-gated potassium channels Kv1 in human hippocampus. Brain Struct. Funct. 223: 2663–2671, https://doi.org/10.1007/s00429-018-1653-x .
doi: 10.1007/s00429-018-1653-x
Xiao, Y., Yang, J., Ji, W., He, Q., Mao, L., and Shu, Y. (2021). A- and D-type potassium currents regulate axonal action potential repolarization in midbrain dopamine neurons. Neuropharmacology 185: 108399, https://doi.org/10.1016/j.neuropharm.2020.108399 .
doi: 10.1016/j.neuropharm.2020.108399
Yee, J.X., Rastani, A., and Soden, M.E. (2022). The potassium channel auxiliary subunit Kvβ2 (Kcnab2) regulates Kv1 channels and dopamine neuron firing. J. Neurophysiol. 128: 62–72, https://doi.org/10.1152/jn.00194.2022 .
doi: 10.1152/jn.00194.2022
Ying, S.W., Kanda, V.A., Hu, Z., Purtell, K., King, E.C., Abbott, G.W., and Goldstein, P.A. (2012). Targeted deletion of Kcne2 impairs HCN channel function in mouse thalamocortical circuits. PLoS One 7: e42756, https://doi.org/10.1371/journal.pone.0042756 .
doi: 10.1371/journal.pone.0042756
Zemel, B.M., Ritter, D.M., Covarrubias, M., and Muqeem, T. (2018). A-type KV channels in dorsal root ganglion neurons: diversity, function, and dysfunction. Front. Mol. Neurosci. 11: 1–17, https://doi.org/10.3389/fnmol.2018.00253 .
doi: 10.3389/fnmol.2018.00253
Zobeiri, M., Chaudhary, R., Blaich, A., Rottmann, M., Herrmann, S., Meuth, P., Bista, P., Kanyshkova, T., Lüttjohann, A., Narayanan, V., et al.. (2019). The hyperpolarization-activated HCN4 channel is important for proper maintenance of oscillatory activity in the thalamocortical system. Cerebr. Cortex 29: 2291–2304, https://doi.org/10.1093/cercor/bhz047 .
doi: 10.1093/cercor/bhz047
Zobeiri, M., Chaudhary, R., Datunashvili, M., Heuermann, R.J., Lüttjohann, A., Narayanan, V., Balfanz, S., Meuth, P., Chetkovich, D.M., Pape, H.-C., et al.. (2018). Modulation of thalamocortical oscillations by TRIP8b, an auxiliary subunit for HCN channels. Brain Struct. Funct. 223: 1537–1564, https://doi.org/10.1007/s00429-017-1559-z .
doi: 10.1007/s00429-017-1559-z