The Effects of Statins on Respiratory Symptoms and Pulmonary Fibrosis in COVID-19 Patients with Diabetes Mellitus: A Longitudinal Multicenter Study.


Journal

Archivum immunologiae et therapiae experimentalis
ISSN: 1661-4917
Titre abrégé: Arch Immunol Ther Exp (Warsz)
Pays: Switzerland
ID NLM: 0114365

Informations de publication

Date de publication:
28 Feb 2023
Historique:
received: 29 09 2022
accepted: 14 12 2022
entrez: 28 2 2023
pubmed: 1 3 2023
medline: 3 3 2023
Statut: epublish

Résumé

The aim of this prospective cohort study was to explore the effect of statins on long-term respiratory symptoms and pulmonary fibrosis in coronavirus disease 2019 (COVID-19) patients with diabetes mellitus (DM). Patients were recruited from three tertiary hospitals, categorized into Statin or Non-statin groups, and assessed on days 0, 28, and 90 after symptoms onset to record the duration of symptoms. Pulmonary fibrosis was scored at baseline and follow-up time points by high-resolution computed tomography scans. Each group comprised 176 patients after propensity score matching. Data analysis revealed that the odds of having cough and dyspnea were significantly higher in the Non-statin group compared to the Statin group during the follow-up period. Overall, there was no significant difference in the change in pulmonary fibrosis score between groups. However, Non-statin patients with > 5 years of DM were more likely to exhibit a significantly higher fibrosis score during the follow-up period as compared to their peers in the Statin group. Our results suggest that the use of statins is associated with a lower risk of developing chronic cough and dyspnea in diabetic patients with COVID-19, and may reduce pulmonary fibrosis associated with COVID-19 in patients with long-term (> 5 years) DM.

Identifiants

pubmed: 36853269
doi: 10.1007/s00005-023-00672-1
pii: 10.1007/s00005-023-00672-1
pmc: PMC9972324
doi:

Types de publication

Multicenter Study Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

8

Subventions

Organisme : Silesian University of Technology
ID : 32/007/SDU/10-21-02

Informations de copyright

© 2023. The Author(s).

Références

Adhyaru BB, Jacobson TA (2018) Safety and efficacy of statin therapy. Nat Rev Cardiol 15:757–769. https://doi.org/10.1038/s41569-018-0098-5
doi: 10.1038/s41569-018-0098-5 pubmed: 30375494
Ahmadi M, Amiri S, Pecic S et al (2020) Pleiotropic effects of statins: a focus on cancer. Biochim Biophys Acta Mol Basis Dis 1866:165968. https://doi.org/10.1016/j.bbadis.2020.165968
doi: 10.1016/j.bbadis.2020.165968 pubmed: 32927022
Alizadeh J, Zeki AA, Mirzaei N et al (2017) Mevalonate cascade inhibition by simvastatin induces the intrinsic apoptosis pathway via depletion of isoprenoids in tumor cells. Sci Rep 7:44841. https://doi.org/10.1038/srep44841
doi: 10.1038/srep44841 pubmed: 28344327 pmcid: 5366866
Alizadeh J, Glogowska A, Thliveris J et al (2018) Autophagy modulates transforming growth factor beta 1 induced epithelial to mesenchymal transition in non-small cell lung cancer cells. Biochim Biophys Acta Mol Cell Res 1865:749–768. https://doi.org/10.1016/j.bbamcr.2018.02.007
doi: 10.1016/j.bbamcr.2018.02.007 pubmed: 29481833
American Diabetes Association (2021) 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2021. Diabetes Care 44(Suppl 1):S15–S33. https://doi.org/10.2337/dc21-s002
doi: 10.2337/dc21-s002
American Diabetes Association Professional Practice Committee (2022) 10. Cardiovascular disease and risk management: standards of medical care in diabetes-2022. Diabetes Care 45(Suppl 1):S144–S174. https://doi.org/10.2337/dc22-er05
doi: 10.2337/dc22-er05
Araya J, Kojima J, Takasaka N et al (2013) Insufficient autophagy in idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 304:L56–L69. https://doi.org/10.1152/ajplung.00213.2012
doi: 10.1152/ajplung.00213.2012 pubmed: 23087019
Camiciottoli G, Orlandi I, Bartolucci M et al (2007) Lung CT densitometry in systemic sclerosis: correlation with lung function, exercise testing, and quality of life. Chest 131:672–681. https://doi.org/10.1378/chest.06-1401
doi: 10.1378/chest.06-1401 pubmed: 17356079
Cariou B, Goronflot T, Rimbert A et al (2021) Routine use of statins and increased COVID-19 related mortality in inpatients with type 2 diabetes: results from the CORONADO study. Diabetes Metab 47:101202. https://doi.org/10.1016/j.diabet.2020.10.001
doi: 10.1016/j.diabet.2020.10.001 pubmed: 33091555
Centers for Disease Control and Prevention (2020) Interim clinical guidance for management of patients with confirmed coronavirus disease (COVID-19). https://stacks.cdc.gov/view/cdc/89980
Centers for Disease Control and Prevention (2022) Underlying medical conditions associated with higher risk for severe COVID-19: information for healthcare professionals [Online]. https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-care/underlyingconditions.html . Accessed 17/05/2022
Davoodi L, Jafarpour H, Oladi Z et al (2021) Atorvastatin therapy in COVID-19 adult inpatients: a double-blind, randomized controlled trial. Int J Cardiol Heart Vasc 36:100875. https://doi.org/10.1016/j.ijcha.2021.100875
doi: 10.1016/j.ijcha.2021.100875 pubmed: 34541293 pmcid: 8437805
Dhand R, Li J (2020) Coughs and sneezes: their role in transmission of respiratory viral infections, including SARS-CoV-2. Am J Respir Critical Care Med 202:651–659. https://doi.org/10.1164/rccm.202004-1263pp
doi: 10.1164/rccm.202004-1263pp
Drozdzal S, Rosik J, Lechowicz K et al (2021) An update on drugs with therapeutic potential for SARS-CoV-2 (COVID-19) treatment. Drug Resist Updat 59:100794. https://doi.org/10.1016/j.drup.2021.100794
doi: 10.1016/j.drup.2021.100794 pubmed: 34991982 pmcid: 8654464
Elahi S, Weiss RH, Merani S (2016) Atorvastatin restricts HIV replication in CD4+ T cells by upregulation of p21. AIDS 30:171–183. https://doi.org/10.1097/QAD.0000000000000917
doi: 10.1097/QAD.0000000000000917 pubmed: 26645604
Emami A, Shojaei S, Da Silva Rosa SC et al (2019) Mechanisms of simvastatin myotoxicity: the role of autophagy flux inhibition. Eur J Pharmacol 862:172616. https://doi.org/10.1016/j.ejphar.2019.172616
doi: 10.1016/j.ejphar.2019.172616 pubmed: 31449810
Gawish R, Starkl P, Pimenov L et al (2022) ACE2 is the critical in vivo receptor for SARS-CoV-2 in a novel COVID-19 mouse model with TNF- and IFNgamma-driven immunopathology. Elife 11:e74623. https://doi.org/10.7554/elife.74623
doi: 10.7554/elife.74623 pubmed: 35023830 pmcid: 8776253
George PM, Wells AU, Jenkins RG (2020) Pulmonary fibrosis and COVID-19: the potential role for antifibrotic therapy. Lancet Respir Med 8:807–815. https://doi.org/10.1016/s2213-2600(20)30225-3
doi: 10.1016/s2213-2600(20)30225-3 pubmed: 32422178 pmcid: 7228727
Ghavami S, Mutawe MM, Schaafsma D et al (2012) Geranylgeranyl transferase 1 modulates autophagy and apoptosis in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 302:L420–L428. https://doi.org/10.1152/ajplung.00312.2011
doi: 10.1152/ajplung.00312.2011 pubmed: 22160308
Ghavami S, Sharma P, Yeganeh B et al (2014) Airway mesenchymal cell death by mevalonate cascade inhibition: integration of autophagy, unfolded protein response and apoptosis focusing on Bcl2 family proteins. Biochim Biophys Acta 1843:1259–1271. https://doi.org/10.1016/j.bbamcr.2014.03.006
doi: 10.1016/j.bbamcr.2014.03.006 pubmed: 24637330
Ghavami S, Cunnington RH, Gupta S et al (2015) Autophagy is a regulator of TGF-beta1-induced fibrogenesis in primary human atrial myofibroblasts. Cell Death Dis 6:e1696. https://doi.org/10.1038/cddis.2015.36
doi: 10.1038/cddis.2015.36 pubmed: 25789971 pmcid: 4385916
Ghavami S, Yeganeh B, Zeki AA et al (2018) Autophagy and the unfolded protein response promote profibrotic effects of TGF-beta1 in human lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 314:L493–L504. https://doi.org/10.1152/ajplung.00372.2017
doi: 10.1152/ajplung.00372.2017 pubmed: 29074489
Gower TL, Graham BS (2001) Antiviral activity of lovastatin against respiratory syncytial virus in vivo and in vitro. Antimicrob Agents Chemother 45:1231–1237. https://doi.org/10.1128/AAC.45.4.1231-1237.2001
doi: 10.1128/AAC.45.4.1231-1237.2001 pubmed: 11257039 pmcid: 90448
Gu W, Cui R, Ding T et al (2017) Simvastatin alleviates airway inflammation and remodelling through up-regulation of autophagy in mouse models of asthma. Respirology 22:533–541. https://doi.org/10.1111/resp.12926
doi: 10.1111/resp.12926 pubmed: 27782356
Guo W, Li M, Dong Y et al (2020) Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes Metab Res Rev 36:e3319. https://doi.org/10.1002/dmrr.3319
doi: 10.1002/dmrr.3319 pubmed: 32233013 pmcid: 7228407
Habibzadeh P, Dastsooz H, Eshraghi M et al (2021) Autophagy: the potential link between SARS-CoV-2 and cancer. Cancers 13:5721. https://doi.org/10.3390/cancers13225721
doi: 10.3390/cancers13225721 pubmed: 34830876 pmcid: 8616402
Han F, Xiao QQ, Peng S et al (2018) Atorvastatin ameliorates LPS-induced inflammatory response by autophagy via AKT/mTOR signaling pathway. J Cell Biochem 119:1604–1615. https://doi.org/10.1002/jcb.26320
doi: 10.1002/jcb.26320 pubmed: 28771872
Hulme K, Dogan S, Parker SM et al (2019) ‘Chronic cough, cause unknown’: a qualitative study of patient perspectives of chronic refractory cough. J Health Psychol 24:707–716. https://doi.org/10.1177/1359105316684204
doi: 10.1177/1359105316684204 pubmed: 28810370
Hussain A, Bhowmik B, Do Vale Moreira NC (2020) COVID-19 and diabetes: Knowledge in progress. Diabetes Res Clin Pract 162:108142. https://doi.org/10.1016/j.diabres.2020.108142
doi: 10.1016/j.diabres.2020.108142 pubmed: 32278764 pmcid: 7144611
Jackson CB, Farzan M, Chen B et al (2022) Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol 23:3–20. https://doi.org/10.1038/s41580-021-00418-x
doi: 10.1038/s41580-021-00418-x pubmed: 34611326
Jones RM, Hilldrup S, Hope-Gill BD et al (2011) Mechanical induction of cough in idiopathic pulmonary fibrosis. Cough 7:2. https://doi.org/10.1186/1745-9974-7-2
doi: 10.1186/1745-9974-7-2 pubmed: 21477349 pmcid: 3094358
Jutant EM, Meyrignac O, Beurnier A et al (2022) Respiratory symptoms and radiological findings in post-acute COVID-19 syndrome. ERJ Open Res 8:00479–02021. https://doi.org/10.1183/23120541.00479-2021
doi: 10.1183/23120541.00479-2021 pubmed: 35445129 pmcid: 8685862
Kim SW, Kang HJ, Jhon M et al (2019) Statins and Inflammation: New therapeutic opportunities in psychiatry. Front Psychiatry 10:103. https://doi.org/10.3389/fpsyt.2019.00103
doi: 10.3389/fpsyt.2019.00103 pubmed: 30890971 pmcid: 6413672
Kou L, Kou P, Luo G et al (2022) Progress of statin therapy in the treatment of idiopathic pulmonary fibrosis. Oxid Med Cell Longev 2022:6197219. https://doi.org/10.1155/2022/6197219
doi: 10.1155/2022/6197219 pubmed: 35345828 pmcid: 8957418
Kouhpayeh HR, Tabasi F, Dehvari M et al (2021) Association between angiotensinogen (AGT), angiotensin-converting enzyme (ACE) and angiotensin-II receptor 1 (AGTR1) polymorphisms and COVID-19 infection in the southeast of Iran: a preliminary case–control study. Transl Med Commun 6:26. https://doi.org/10.1186/s41231-021-00106-0
doi: 10.1186/s41231-021-00106-0 pubmed: 34805533 pmcid: 8596349
Kreuter M, Bonella F, Maher TM et al (2017) Effect of statins on disease-related outcomes in patients with idiopathic pulmonary fibrosis. Thorax 72:148–153. https://doi.org/10.1136/thoraxjnl-2016-208819
doi: 10.1136/thoraxjnl-2016-208819 pubmed: 27708114
Kyrou I, Randeva HS, Spandidos DA et al (2021) Not only ACE2-the quest for additional host cell mediators of SARS-CoV-2 infection: neuropilin-1 (NRP1) as a novel SARS-CoV-2 host cell entry mediator implicated in COVID-19. Signal Transduct Target Ther 6:21. https://doi.org/10.1038/s41392-020-00460-9
doi: 10.1038/s41392-020-00460-9 pubmed: 33462185 pmcid: 7812344
Lachowicz-Scroggins ME, Dunican EM, Charbit AR et al (2019) Extracellular DNA, neutrophil extracellular traps, and inflammasome activation in severe asthma. Am J Respir Crit Care Med 199:1076–1085. https://doi.org/10.1164/rccm.201810-1869OC
doi: 10.1164/rccm.201810-1869OC pubmed: 30888839 pmcid: 6515873
Lechowicz K, Drożdżal S, Machaj F et al (2020) COVID-19: the potential treatment of pulmonary fibrosis associated with SARS-CoV-2 infection. J Clin Med 9:1917. https://doi.org/10.3390/jcm9061917
doi: 10.3390/jcm9061917 pubmed: 32575380 pmcid: 7356800
Lee KCH, Sewa DW, Phua GC (2020) Potential role of statins in COVID-19. Int J Infect Dis 96:615–617. https://doi.org/10.1016/j.ijid.2020.05.115
doi: 10.1016/j.ijid.2020.05.115 pubmed: 32502659 pmcid: 7265877
Liao JK, Laufs U (2005) Pleiotropic effects of statins. Annu Rev Pharmacol Toxicol 45:89–118. https://doi.org/10.1146/annurev.pharmtox.45.120403.095748
doi: 10.1146/annurev.pharmtox.45.120403.095748 pubmed: 15822172 pmcid: 2694580
Lim S, Bae JH, Kwon HS et al (2021) COVID-19 and diabetes mellitus: from pathophysiology to clinical management. Nat Rev Endocrinol 17:11–30. https://doi.org/10.1038/s41574-020-00435-4
doi: 10.1038/s41574-020-00435-4 pubmed: 33188364
Lohia P, Kapur S, Benjaram S et al (2021) Statins and clinical outcomes in hospitalized COVID-19 patients with and without diabetes mellitus: a retrospective cohort study with propensity score matching. Cardiovasc Diabetol 20:140. https://doi.org/10.1186/s12933-021-01336-0
doi: 10.1186/s12933-021-01336-0 pubmed: 34246277 pmcid: 8272452
Loppnow H, Zhang L, Buerke M et al (2011) Statins potently reduce the cytokine-mediated IL-6 release in SMC/MNC cocultures. J Cell Mol Med 15:994–1004. https://doi.org/10.1111/j.1582-4934.2010.01036.x
doi: 10.1111/j.1582-4934.2010.01036.x pubmed: 20158569
Meizlish ML, Pine AB, Bishai JD et al (2021) A neutrophil activation signature predicts critical illness and mortality in COVID-19. Blood Adv 5:1164–1177. https://doi.org/10.1182/bloodadvances.2020003568
doi: 10.1182/bloodadvances.2020003568 pubmed: 33635335 pmcid: 7908851
Parackova Z, Zentsova I, Bloomfield M et al (2020) Disharmonic inflammatory signatures in COVID-19: Augmented neutrophils’ but impaired monocytes’ and dendritic cells’ responsiveness. Cells 9:2206. https://doi.org/10.3390/cells9102206
doi: 10.3390/cells9102206 pubmed: 33003471 pmcid: 7600406
Pawlos A, Niedzielski M, Gorzelak-Pabiś P et al (2021) COVID-19: Direct and Indirect mechanisms of statins. Int J Mol Sci 22:4177. https://doi.org/10.3390/ijms22084177
doi: 10.3390/ijms22084177 pubmed: 33920709 pmcid: 8073792
Peng S, Xu LW, Che XY et al (2018) Atorvastatin inhibits inflammatory response, attenuates lipid deposition, and improves the stability of vulnerable atherosclerotic plaques by modulating autophagy. Front Pharmacol 9:438. https://doi.org/10.3389/fphar.2018.00438
doi: 10.3389/fphar.2018.00438 pubmed: 29773990 pmcid: 5943597
Peterson CL, Walker C (2022) Universal health care and political economy, neoliberalism and effects of COVID-19: a view of systems and complexity. J Eval Clin Pract 28:338–340. https://doi.org/10.1111/jep.13631
doi: 10.1111/jep.13631 pubmed: 34647671
Peymani P, Dehesh T, Aligolighasemabadi F et al (2021) Statins in patients with COVID-19: a retrospective cohort study in Iranian COVID-19 patients. Transl Med Commun 6:3. https://doi.org/10.1186/s41231-021-00082-5
doi: 10.1186/s41231-021-00082-5 pubmed: 33521322 pmcid: 7829327
Raveendran A, Misra A (2021) Post COVID-19 syndrome (“Long COVID”) and diabetes: challenges in diagnosis and management. Diabetes Metab Syndr 15:102235. https://doi.org/10.1016/j.dsx.2021.102235
doi: 10.1016/j.dsx.2021.102235 pubmed: 34384972 pmcid: 8317446
Reusch N, De Domenico E, Bonaguro L et al (2021) Neutrophils in COVID-19. Front Immunol 12:652470. https://doi.org/10.3389/fimmu.2021.652470
doi: 10.3389/fimmu.2021.652470 pubmed: 33841435 pmcid: 8027077
Saeed O, Castagna F, Agalliu I et al (2020) Statin use and in-hospital mortality in patients with diabetes mellitus and COVID-19. J Am Heart Assoc 9:e018475. https://doi.org/10.1161/JAHA.120.018475
doi: 10.1161/JAHA.120.018475 pubmed: 33092446 pmcid: 7955378
Santos A, Magro DO, Evangelista-Poderoso R et al (2021) Diabetes, obesity, and insulin resistance in COVID-19: molecular interrelationship and therapeutic implications. Diabetol Metab Syndr 13:23. https://doi.org/10.1186/s13098-021-00639-2
doi: 10.1186/s13098-021-00639-2 pubmed: 33648564 pmcid: 7919999
Satny M, Hubacek JA, Vrablik M (2021) Statins and inflammation. Curr Atheroscler Rep 23:80. https://doi.org/10.1007/s11883-021-00977-6
doi: 10.1007/s11883-021-00977-6 pubmed: 34851454
Schaafsma D, Dueck G, Ghavami S et al (2011a) The mevalonate cascade as a target to suppress extracellular matrix synthesis by human airway smooth muscle. Am J Respir Cell Mol Biol 44:394–403. https://doi.org/10.1165/rcmb.2010-0052oc
doi: 10.1165/rcmb.2010-0052oc pubmed: 20463291
Schaafsma D, Mcneill KD, Mutawe MM et al (2011b) Simvastatin inhibits TGFbeta1-induced fibronectin in human airway fibroblasts. Respir Res 12:113. https://doi.org/10.1186/1465-9921-12-113
doi: 10.1186/1465-9921-12-113 pubmed: 21864337 pmcid: 3173339
Scheen AJ (2021) Statins and clinical outcomes with COVID-19: meta-analyses of observational studies. Diabetes Metab 47:101220. https://doi.org/10.1016/j.diabet.2020.101220
doi: 10.1016/j.diabet.2020.101220 pubmed: 33359486
Shojaei S, Koleini N, Samiei E et al (2020a) Simvastatin increases temozolomide-induced cell death by targeting the fusion of autophagosomes and lysosomes. FEBS J 287:1005–1034. https://doi.org/10.1111/febs.15069
doi: 10.1111/febs.15069 pubmed: 31545550
Shojaei S, Suresh M, Klionsky DJ et al (2020b) Autophagy and SARS-CoV-2 infection: a possible smart targeting of the autophagy pathway. Virulence 11:805–810. https://doi.org/10.1080/21505594.2020.1780088
doi: 10.1080/21505594.2020.1780088 pubmed: 32567972 pmcid: 7549903
Siri M, Dastghaib S, Zamani M et al (2021) Autophagy, unfolded protein response, and neuropilin-1 cross-talk in SARS-CoV-2 infection: what can be learned from other coronaviruses. Int J Mol Sci 22:5992. https://doi.org/10.3390/ijms22115992
doi: 10.3390/ijms22115992 pubmed: 34206057 pmcid: 8199451
Song WJ, Hui CKM, Hull JH et al (2021) Confronting COVID-19-associated cough and the post-COVID syndrome: role of viral neurotropism, neuroinflammation, and neuroimmune responses. Lancet Respir Med 9:533–544. https://doi.org/10.1016/s2213-2600(21)00125-9
doi: 10.1016/s2213-2600(21)00125-9 pubmed: 33857435 pmcid: 8041436
Taefehshokr N, Taefehshokr S, Hemmat N et al (2020) Covid-19: perspectives on innate immune evasion. Front Immunol 11:580641. https://doi.org/10.3389/fimmu.2020.580641
doi: 10.3389/fimmu.2020.580641 pubmed: 33101306 pmcid: 7554241
Walls AC, Park YJ, Tortorici MA et al (2020) Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181:281-292.e6. https://doi.org/10.1016/j.cell.2020.02.058
doi: 10.1016/j.cell.2020.02.058 pubmed: 32155444 pmcid: 7102599
Watts KL, Sampson EM, Schultz GS et al (2005) Simvastatin inhibits growth factor expression and modulates profibrogenic markers in lung fibroblasts. Am J Respir Cell Mol Biol 32:290–300. https://doi.org/10.1165/rcmb.2004-0127oc
doi: 10.1165/rcmb.2004-0127oc pubmed: 15677772
Winslow S, Odqvist L, Diver S et al (2021) Multi-omics links IL-6 trans-signalling with neutrophil extracellular trap formation and Haemophilus infection in COPD. Eur Respir J 58:2003312. https://doi.org/10.1183/13993003.03312-2020
doi: 10.1183/13993003.03312-2020 pubmed: 33766947
Yang T, Chen M, Sun T (2013) Simvastatin attenuates TGF-β1-induced epithelial–mesenchymal transition in human alveolar epithelial cells. Cell Physiol Biochem 31:863–874. https://doi.org/10.1159/000350104
doi: 10.1159/000350104 pubmed: 23817018
Yang J, Zheng Y, Gou X et al (2020) Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int J Infect Dis 94:91–95. https://doi.org/10.1016/j.ijid.2020.03.017
doi: 10.1016/j.ijid.2020.03.017 pubmed: 32173574 pmcid: 7194638
Yavarian J, Nejati A, Salimi V et al (2022) Whole genome sequencing of SARS-CoV2 strains circulating in Iran during five waves of pandemic. PLoS ONE 17:e0267847. https://doi.org/10.1371/journal.pone.0267847
doi: 10.1371/journal.pone.0267847 pubmed: 35499994 pmcid: 9060343

Auteurs

Mohammadamin Sadeghdoust (M)

Department of Internal Medicine, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran.

Farnaz Aligolighasemabadi (F)

Department of Internal Medicine, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran.

Tania Dehesh (T)

Department of Biostatistics and Epidemiology, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran.

Nima Taefehshokr (N)

Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON, Canada.

Adel Sadeghdoust (A)

Department of Internal Medicine, School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.

Katarzyna Kotfis (K)

Department of Anesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University in Szczecin, Szczecin, Poland.

Amirhossein Hashemiattar (A)

Department of Radiology, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran.

Amir Ravandi (A)

Institute of Cardiovascular Sciences, Sr. Boniface Research Centre, University of Manitoba, Winnipeg, Canada.

Neda Aligolighasemabadi (N)

Department of Internal Medicine, School of Medicine, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran.

Omid Vakili (O)

Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.

Beniamin Grabarek (B)

Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, Zabrze, Poland.
Department of Gynaecology and Obstetrics, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, Zabrze, Poland.
Laboratory of Molecular Biology and Virology, GynCentrum, Katowice, Poland.

Rafał Staszkiewicz (R)

Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, Zabrze, Poland.
Department of Neurosurgery, 5Th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, Krakow, Poland.

Marek J Łos (MJ)

Biotechnology Center, Silesian University of Technology, Gliwice, Poland. mjelos@gmail.com.
Autophagy Research Center, Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz, Iran. mjelos@gmail.com.

Pooneh Mokarram (P)

Autophagy Research Center, Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz, Iran. mokaram2@gmail.com.

Saeid Ghavami (S)

Autophagy Research Center, Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz, Iran. saeid.ghavami@umanitoba.ca.
Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada. saeid.ghavami@umanitoba.ca.
Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, Zabrze, Poland. saeid.ghavami@umanitoba.ca.
Research Institute of Oncology and Hematology, Cancer Care, Manitoba University of Manitoba, Winnipeg, Canada. saeid.ghavami@umanitoba.ca.
Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada. saeid.ghavami@umanitoba.ca.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH