Chimeric antigen receptor T cells therapy in solid tumors.


Journal

Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico
ISSN: 1699-3055
Titre abrégé: Clin Transl Oncol
Pays: Italy
ID NLM: 101247119

Informations de publication

Date de publication:
Aug 2023
Historique:
received: 13 01 2023
accepted: 10 02 2023
medline: 28 6 2023
pubmed: 1 3 2023
entrez: 28 2 2023
Statut: ppublish

Résumé

Chimeric antigen receptor T cells therapy (CAR-T therapy) is a class of ACT therapy. Chimeric antigen receptor (CAR) is an engineered synthetic receptor of CAR-T, which give T cells the ability to recognize tumor antigens in a human leukocyte antigen-independent (HLA-independent) manner and enables them to recognize more extensive target antigens than natural T cell surface receptor (TCR), resulting in tumor destruction. CAR-T is composed of an extracellular single-chain variable fragment (scFv) of antibody, which serves as the targeting moiety, hinge region, transmembrane spacer, and intracellular signaling domain(s). CAR-T has been developing in many generations, which differ according to costimulatory domains. CAR-T therapy has several limitations that reduce its wide availability in immunotherapy which we can summarize in antigen escape that shows either partial or complete loss of target antigen expression, so multiplexing CAR-T cells are promoted to enhance targeting of tumor profiles. In addition, the large diversity in the tumor microenvironment also plays a major role in limiting this kind of treatment. Therefore, engineered CAR-T cells can evoke immunostimulatory signals that rebalance the tumor microenvironment. Using CAR-T therapy in treating the solid tumor is mainly restricted by the difficulty of CAR-T cells infiltrating the tumor site, so local administration was developed to improve the quality of treatment. The most severe toxicity after CAR-T therapy is on-target/on-tumor toxicity, such as cytokine release syndrome (CRS). Another type of toxicity is on-target/off-tumor toxicity which originates from the binding of CAR-T cells to target antigen that has shared expression on normal cells leading to damage in healthy cells and organs. Toxicity management should become a focus of implementation to permit management beyond specialized centers.

Identifiants

pubmed: 36853399
doi: 10.1007/s12094-023-03122-8
pii: 10.1007/s12094-023-03122-8
doi:

Substances chimiques

Receptors, Chimeric Antigen 0
Receptors, Antigen, T-Cell 0

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

2279-2296

Informations de copyright

© 2023. The Author(s), under exclusive licence to Federación de Sociedades Españolas de Oncología (FESEO).

Références

Roliński J, Grywalska E, Pyzik A, Dzik M, Opoka-Winiarska V, Surdacka A, et al. Interferon alpha as antiviral therapy in chronic active epstein-barr virus disease with interstitial pneumonia - case report. BMC Infect Dis. 2018;18(1):190.
doi: 10.1186/s12879-018-3097-6
Verhoeven D, Stoppelenburg AJ, Meyer-Wentrup F, Boes M. Increased risk of hematologic malignancies in primary immunodeficiency disorders: opportunities for immunotherapy. Clin Immunol. 2018;190:22–31.
doi: 10.1016/j.clim.2018.02.007
Guo L-L, Wang G-C, Li P-J, Wang C-M, Liu L-B. Recombinant adenovirus expressing a dendritic cell-targeted melanoma surface antigen for tumor-specific immunotherapy in melanoma mice model. Exp Ther Med. 2018;15(6):5394–402.
Thangamathesvaran L, Shah R, Verma R, Mahmoud O. Immune checkpoint inhibitors and radiotherapy-concept and review of current literature. Ann Transl Med. 2018;6(8):155.
doi: 10.21037/atm.2018.03.09
Karkhah A, Javanian M, Ebrahimpour S. The role of regulatory T cells in immunopathogenesis and immunotherapy of viral infections. Infect Genet Evol J Mol Epidemiol Evol Genet Infect Dis. 2018;59:32–7.
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64.
doi: 10.1038/nrc3239
Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R, Kammula U, et al. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol Off J Am Soc Clin Oncol. 2008;26(32):5233–9.
doi: 10.1200/JCO.2008.16.5449
Ma S, Li X, Wang X, Cheng L, Li Z, Zhang C, et al. Current Progress in CAR-T Cell therapy for Solid Tumors. Int J Biol Sci. 2019;15(12):2548 (Available from: /pmc/articles/PMC6854376/).
doi: 10.7150/ijbs.34213
Eshhar Z, Waks T, Gross G, Schindler DG. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci U S A. 1993;90(2):720–4.
doi: 10.1073/pnas.90.2.720
Curran KJ, Pegram HJ, Brentjens RJ. Chimeric antigen receptors for T cell immunotherapy: current understanding and future directions. J Gene Med. 2012;14(6):405–15.
doi: 10.1002/jgm.2604
Lohmueller JJ, Ham JD, Kvorjak M, Finn OJ. mSA2 affinity-enhanced biotin-binding CAR T cells for universal tumor targeting. [cited 2022 Nov 23]; Available from: https://www.tandfonline.com/action/journalInformation?journalCode=koni20
Cho JH, Collins JJ, Wong WW. Universal chimeric antigen receptors for multiplexed and logical control of T cell responses. Cell. 2018;173(6):1426-1438.e11.
doi: 10.1016/j.cell.2018.03.038
Willemsen RA, Debets R, Hart E, Hoogenboom HR, Bolhuis RL, Chames P. A phage display selected fab fragment with MHC class I-restricted specificity for MAGE-A1 allows for retargeting of primary human T lymphocytes. Gene Ther. 2001;8(21):1601–8.
doi: 10.1038/sj.gt.3301570
Chailyan A, Marcatili P, Tramontano A. The association of heavy and light chain variable domains in antibodies: Implications for antigen specificity. FEBS J. 2011;278(16):2858–66.
doi: 10.1111/j.1742-4658.2011.08207.x
Wei J, Han X, Bo J, Han W. Target selection for CAR-T therapy. J Hematol Oncol. 2019;12(1):62.
doi: 10.1186/s13045-019-0758-x
Liu X, Jiang S, Fang C, Yang S, Olalere D, Pequignot EC, et al. Affinity-Tuned ErbB2 or EGFR chimeric antigen receptor T cells exhibit an increased therapeutic index against tumors in mice. Cancer Res. 2015;75(17):3596–607.
doi: 10.1158/0008-5472.CAN-15-0159
Caruso HG, Hurton LV, Najjar A, Rushworth D, Ang S, Olivares S, et al. Tuning sensitivity of CAR To EGFR density limits recognition of normal tissue while maintaining potent antitumor activity. Cancer Res. 2015;75(17):3505–18.
doi: 10.1158/0008-5472.CAN-15-0139
Hudecek M, Sommermeyer D, Kosasih PL, Silva-Benedict A, Liu L, Rader C, et al. The nonsignaling extracellular spacer domain of chimeric antigen receptors is decisive for in vivo antitumor activity. Cancer Immunol Res. 2015;3(2):125–35.
doi: 10.1158/2326-6066.CIR-14-0127
Jensen MC, Riddell SR. Designing chimeric antigen receptors to effectively and safely target tumors. Curr Opin Immunol. 2015;33:9–15.
doi: 10.1016/j.coi.2015.01.002
Srivastava S, Riddell SR. Engineering CAR-T cells: design concepts. Trends Immunol. 2015;36(8):494–502.
doi: 10.1016/j.it.2015.06.004
Guest RD, Hawkins RE, Kirillova N, Cheadle EJ, Arnold J, O’Neill A, et al. The role of extracellular spacer regions in the optimal design of chimeric immune receptors: evaluation of four different scFvs and antigens. J Immunother. 2005;28(3):203–11.
doi: 10.1097/01.cji.0000161397.96582.59
James SE, Greenberg PD, Jensen MC, Lin Y, Wang J, Till BG, et al. Antigen sensitivity of CD22-specific chimeric TCR is modulated by target epitope distance from the cell membrane. J Immunol. 2008;180(10):7028–38.
doi: 10.4049/jimmunol.180.10.7028
Wilkie S, Picco G, Foster J, Davies DM, Julien S, Cooper L, et al. Retargeting of human T cells to tumor-associated MUC1: the evolution of a chimeric antigen receptor. J Immunol. 2008;180(7):4901–9.
doi: 10.4049/jimmunol.180.7.4901
Bridgeman JS, Hawkins RE, Bagley S, Blaylock M, Holland M, Gilham DE. The optimal antigen response of chimeric antigen receptors harboring the CD3zeta transmembrane domain is dependent upon incorporation of the receptor into the endogenous TCR/CD3 complex. J Immunol. 2010;184(12):6938–49.
doi: 10.4049/jimmunol.0901766
Guedan S, Posey ADJ, Shaw C, Wing A, Da T, Patel PR, et al. Enhancing CAR T cell persistence through ICOS and 4–1BB costimulation. JCI insight. 2018 3 (1).
Zhang T, Wu M-R, Sentman CL. An NKp30-based chimeric antigen receptor promotes T cell effector functions and antitumor efficacy in vivo. J Immunol. 2012;189(5):2290–9.
doi: 10.4049/jimmunol.1103495
Dotti G, Gottschalk S, Savoldo B, Brenner MK. Design and development of therapies using chimeric antigen receptor-expressing T cells. Immunol Rev. 2014;257(1):107–26.
doi: 10.1111/imr.12131
Alabanza L, Pegues M, Geldres C, Shi V, Wiltzius JJW, Sievers SA, et al. Function of Novel Anti-CD19 chimeric antigen receptors with human variable regions is affected by hinge and transmembrane domains. Mol Ther. 2017;25(11):2452–65.
doi: 10.1016/j.ymthe.2017.07.013
Ying Z, Huang XF, Xiang X, Liu Y, Kang X, Song Y, et al. A safe and potent anti-CD19 CAR T cell therapy. Nat Med. 2019;25(6):947–53.
doi: 10.1038/s41591-019-0421-7
Rafiq S, Hackett CS, Brentjens RJ. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat Rev Clin Oncol. 2020;17(3):147–67.
doi: 10.1038/s41571-019-0297-y
Heuser C, Hombach A, Lösch C, Manista K, Abken H. T-cell activation by recombinant immunoreceptors: impact of the intracellular signalling domain on the stability of receptor expression and antigen-specific activation of grafted T cells. Gene Ther. 2003;10(17):1408–19.
doi: 10.1038/sj.gt.3302023
Haynes NM, Snook MB, Trapani JA, Cerruti L, Jane SM, Smyth MJ, et al. Redirecting mouse CTL against colon carcinoma: superior signaling efficacy of single-chain variable domain chimeras containing TCR-zeta vs Fc epsilon RI-gamma. J Immunol. 2001;166(1):182–7.
doi: 10.4049/jimmunol.166.1.182
Harding FA, McArthur JG, Gross JA, Raulet DH, Allison JP. CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature. 1992;356(6370):607–9.
doi: 10.1038/356607a0
Lenschow DJ, Walunas TL, Bluestone JA. CD28/B7 system of T cell costimulation. Annu Rev Immunol. 1996;14:233–58.
doi: 10.1146/annurev.immunol.14.1.233
Bretscher P, Cohn M. A theory of self-nonself discrimination. Science. 1970;169(3950):1042–9.
doi: 10.1126/science.169.3950.1042
Bretscher PA. A two-step, two-signal model for the primary activation of precursor helper T cells. Proc Natl Acad Sci U S A. 1999;96(1):185–90.
doi: 10.1073/pnas.96.1.185
Kowolik CM, Topp MS, Gonzalez S, Pfeiffer T, Olivares S, Gonzalez N, et al. CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells. Cancer Res. 2006;66(22):10995–1004.
doi: 10.1158/0008-5472.CAN-06-0160
Savoldo B, Ramos CA, Liu E, Mims MP, Keating MJ, Carrum G, et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J Clin Invest. 2011;121(5):1822–6.
doi: 10.1172/JCI46110
Milone MC, Fish JD, Carpenito C, Carroll RG, Binder GK, Teachey D, et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther. 2009;17(8):1453–64.
doi: 10.1038/mt.2009.83
Kawalekar OU, O’Connor RS, Fraietta JA, Guo L, McGettigan SE, Posey ADJ, et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity. 2016;44(2):380–90.
doi: 10.1016/j.immuni.2016.01.021
Altvater B, Landmeier S, Pscherer S, Temme J, Juergens H, Pule M, et al. 2B4 (CD244) signaling via chimeric receptors costimulates tumor-antigen specific proliferation and in vitro expansion of human T cells. Cancer Immunol Immunother. 2009;58(12):1991–2001.
doi: 10.1007/s00262-009-0704-9
Long AH, Haso WM, Shern JF, Wanhainen KM, Murgai M, Ingaramo M, et al. 4–1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med. 2015;21(6):581–90.
doi: 10.1038/nm.3838
Quintarelli C, Orlando D, Boffa I, Guercio M, Polito VA, Petretto A, et al. Choice of costimulatory domains and of cytokines determines CAR T-cell activity in neuroblastoma. Oncoimmunology. 2018;7(6): e1433518.
doi: 10.1080/2162402X.2018.1433518
Gomes-Silva D, Mukherjee M, Srinivasan M, Krenciute G, Dakhova O, Zheng Y, et al. Tonic 4–1BB costimulation in chimeric antigen receptors impedes T cell survival and is vector-dependent. Cell Rep. 2017;21(1):17–26.
doi: 10.1016/j.celrep.2017.09.015
Guedan S, Chen X, Madar A, Carpenito C, McGettigan SE, Frigault MJ, et al. ICOS-based chimeric antigen receptors program bipolar TH17/TH1 cells. Blood. 2014;124(7):1070–80.
doi: 10.1182/blood-2013-10-535245
Mata M, Gerken C, Nguyen P, Krenciute G, Spencer DM, Gottschalk S. Inducible activation of MyD88 and CD40 in CAR T cells results in controllable and potent antitumor activity in preclinical solid tumor models. Cancer Discov. 2017;7(11):1306–19.
doi: 10.1158/2159-8290.CD-17-0263
Hombach AA, Heiders J, Foppe M, Chmielewski M, Abken H. OX40 costimulation by a chimeric antigen receptor abrogates CD28 and IL-2 induced IL-10 secretion by redirected CD4(+) T cells. Oncoimmunology. 2012;1(4):458–66.
doi: 10.4161/onci.19855
van der Stegen SJC, Hamieh M, Sadelain M. The pharmacology of second-generation chimeric antigen receptors. Nat Rev Drug Discov. 2015;14(7):499–509.
doi: 10.1038/nrd4597
Gomes Da Silva D, Mukherjee M, Srinivasan M, Dakhova O, Liu H, Grilley B, et al. Direct comparison of In vivo fate of second and third-generation CD19-specific chimeric antigen receptor (CAR)-T cells in patients with B-Cell lymphoma: reversal of toxicity from tonic Signaling. 2016 https://doi.org/10.1182/blood.V128.22.1851.1851
Tang X-Y, Sun Y, Zhang A, Hu G-L, Cao W, Wang D-H, et al. Third-generation CD28/4-1BB chimeric antigen receptor T cells for chemotherapy relapsed or refractory acute lymphoblastic leukaemia: a non-randomised, open-label phase I trial protocol. BMJ Open. 2016;6(12): e013904.
doi: 10.1136/bmjopen-2016-013904
Enblad G, Karlsson H, Gammelgård G, Wenthe J, Lövgren T, Amini RM, et al. A Phase I/IIa trial using CD19-targeted third-generation CAR T cells for lymphoma and leukemia. Clin cancer Res an Off J Am Assoc Cancer Res. 2018;24(24):6185–94.
doi: 10.1158/1078-0432.CCR-18-0426
Weng J, Lai P, Qin L, Lai Y, Jiang Z, Luo C, et al. A novel generation 1928zT2 CAR T cells induce remission in extramedullary relapse of acute lymphoblastic leukemia. J Hematol Oncol. 2018;11(1):25.
doi: 10.1186/s13045-018-0572-x
Sharpe M, Mount N. Genetically modified T cells in cancer therapy: opportunities and challenges. Dis Model Mech. 2015;8(4):337–50.
doi: 10.1242/dmm.018036
Kochenderfer JN, Dudley ME, Feldman SA, Wilson WH, Spaner DE, Maric I, et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood. 2012;119(12):2709–20.
doi: 10.1182/blood-2011-10-384388
Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368(16):1509–18.
doi: 10.1056/NEJMoa1215134
Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci U S A. 1989;86(24):10024–8.
doi: 10.1073/pnas.86.24.10024
Pazmany L, Mandelboim O, Valés-Gómez M, Davis DM, Reyburn HT, Strominger JL. Protection from natural killer cell-mediated lysis by HLA-G expression on target cells. Science. 1996;274(5288):792–5.
doi: 10.1126/science.274.5288.792
Wieten L, Mahaweni NM, Voorter CEM, Bos GMJ, Tilanus MGJ. Clinical and immunological significance of HLA-E in stem cell transplantation and cancer. Tissue Antigens. 2014;84(6):523–35.
doi: 10.1111/tan.12478
Celik AA, Simper GS, Huyton T, Blasczyk R, Bade-Döding C. HLA-G mediated immune regulation is impaired by a single amino acid exchange in the alpha 2 domain. Hum Immunol. 2018;79(6):453–62.
doi: 10.1016/j.humimm.2018.03.010
Kebriaei P, Singh H, Huls MH, Figliola MJ, Bassett R, Olivares S, et al. Phase I trials using sleeping beauty to generate CD19-specific CAR T cells. J Clin Invest. 2016;126(9):3363–76.
doi: 10.1172/JCI86721
Haapaniemi E, Botla S, Persson J, Schmierer B, Taipale J. CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat Med. 2018;24(7):927–30.
doi: 10.1038/s41591-018-0049-z
Ihry RJ, Worringer KA, Salick MR, Frias E, Ho D, Theriault K, et al. p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat Med. 2018;24(7):939–46.
doi: 10.1038/s41591-018-0050-6
Schiroli G, Conti A, Ferrari S, Della Volpe L, Jacob A, Albano L, et al. Precise gene editing preserves hematopoietic stem cell function following transient p53-mediated DNA damage response. Cell Stem Cell. 2019;24(4):551-565.e8.
doi: 10.1016/j.stem.2019.02.019
Abate-Daga D, Davila ML. CAR models: next-generation CAR modifications for enhanced T-cell function. Mol Ther oncolytics. 2016;3:16014.
doi: 10.1038/mto.2016.14
Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A, et al. Regression of glioblastoma after chimeric antigen receptor T-Cell therapy. N Engl J Med [Internet]. 2016;375(26):2561–9.
doi: 10.1056/NEJMoa1610497
Brown CE, Starr R, Aguilar B, Shami AF, Martinez C, D’Apuzzo M, et al. Stem-like tumor-initiating cells isolated from IL13Rα2 expressing gliomas are targeted and killed by IL13-zetakine-redirected T Cells. Clin cancer Res an Off J Am Assoc Cancer Res. 2012;18(8):2199–209.
doi: 10.1158/1078-0432.CCR-11-1669
Schmidt-Wolf IG, Negrin RS, Kiem HP, Blume KG, Weissman IL. Use of a SCID mouse/human lymphoma model to evaluate cytokine-induced killer cells with potent antitumor cell activity. J Exp Med. 1991;174(1):139–49.
doi: 10.1084/jem.174.1.139
Chmielewski M, Hombach AA, Abken H. Antigen-specific T-cell activation independently of the MHC: chimeric antigen receptor-redirected T Cells. Front Immunol. 2013;4:371.
doi: 10.3389/fimmu.2013.00371
Fedorov VD, Themeli M, Sadelain M. PD-1- and CTLA-4-based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Sci Transl Med. 2013 (215):215ra172.
Dai H, Wang Y, Lu X, Han W. Chimeric antigen receptors modified T-Cells for cancer therapy. J Natl Cancer Inst. 2016 108(7).
Juneja VR, McGuire KA, Manguso RT, LaFleur MW, Collins N, Haining WN, et al. PD-L1 on tumor cells is sufficient for immune evasion in immunogenic tumors and inhibits CD8 T cell cytotoxicity. J Exp Med. 2017;214(4):895–904.
doi: 10.1084/jem.20160801
Hu Z, Zheng X, Jiao D, Zhou Y, Sun R, Wang B, et al. LunX-CAR T cells as a targeted therapy for non-small cell lung cancer. Mol Ther oncolytics. 2020;17:361–70.
doi: 10.1016/j.omto.2020.04.008
Ahmed N, Brawley V, Hegde M, Bielamowicz K, Kalra M, Landi D, et al. HER2-Specific chimeric antigen receptor-modified virus-specific T cells for progressive glioblastoma: a phase 1 dose-escalation trial. JAMA Oncol. 2017;3(8):1094–101.
doi: 10.1001/jamaoncol.2017.0184
Batra SA, Rathi P, Guo L, Courtney AN, Fleurence J, Balzeau J, et al. Glypican-3-specific CAR T cells Coexpressing IL15 and IL21 have superior expansion and antitumor activity against hepatocellular carcinoma. Cancer Immunol Res. 2020;8(3):309–20.
doi: 10.1158/2326-6066.CIR-19-0293
Jiang H, Shi Z, Wang P, Wang C, Yang L, Du G, et al. Claudin18.2-specific chimeric antigen receptor engineered T cells for the treatment of gastric cancer. J Natl Cancer Inst. 2019;111(4):409–18.
doi: 10.1093/jnci/djy134
Li H, Ding J, Lu M, Liu H, Miao Y, Li L, et al. CAIX-specific CAR-T cells and sunitinib show synergistic effects against metastatic renal cancer models. J Immunother. 2020;43(1):16–28.
doi: 10.1097/CJI.0000000000000301
Gorchakov AA, Kulemzin SV, Kochneva GV, Taranin AV. Challenges and prospects of chimeric antigen receptor T-cell therapy for metastatic prostate cancer. Eur Urol. 2020;77(3):299–308.
doi: 10.1016/j.eururo.2019.08.014
Hou B, Tang Y, Li W, Zeng Q, Chang D. Efficiency of CAR-T Therapy for Treatment of Solid Tumor in Clinical Trials: A Meta-Analysis. Murdaca G, editor. Dis Markers [Internet]. 2019;2019:3425291. Available from: https://doi.org/10.1155/2019/3425291
Majzner RG, Mackall CL. Tumor antigen escape from CAR T-cell therapy. Cancer Discov. 2018;8(10):1219–26.
doi: 10.1158/2159-8290.CD-18-0442
Maude SL, Teachey DT, Porter DL, Grupp SA. CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood. 2015;125(26):4017–23.
doi: 10.1182/blood-2014-12-580068
Green D, Pont M, Sather B, Cowan A, Turtle C, Till B, et al. Fully human Bcma targeted chimeric antigen receptor T cells administered in a defined composition demonstrate potency at low doses in advanced stage high risk multiple myeloma. Blood. 2018;29(132):1011.
doi: 10.1182/blood-2018-99-117729
Brudno JN, Maric I, Hartman SD, Rose JJ, Wang M, Lam N, et al. T Cells genetically modified to express an Anti-B-cell maturation antigen chimeric antigen receptor cause remissions of poor-prognosis relapsed multiple myeloma. J Clin Oncol Off J Am Soc Clin Oncol. 2018;36(22):2267–80.
doi: 10.1200/JCO.2018.77.8084
Cohen AD, Garfall AL, Stadtmauer EA, Melenhorst JJ, Lacey SF, Lancaster E, et al. B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma. J Clin Invest. 2019;129(6):2210–21.
doi: 10.1172/JCI126397
Lee PP, Marincola FM, editors. Tumor Microenvironment. 2020 [cited 2022 Nov 30];180. Available from: http://link.springer.com/ https://doi.org/10.1007/978-3-030-38862-1
Jin L, Tao H, Karachi A, Long Y, Hou AY, Na M, et al. CXCR1- or CXCR2-modified CAR T cells co-opt IL-8 for maximal antitumor efficacy in solid tumors. Nat Commun. 2019;10(1):4016.
doi: 10.1038/s41467-019-11869-4
Whilding LM, Halim L, Draper B, Parente-Pereira AC, Zabinski T, Davies DM, et al. CAR T-Cells Targeting the Integrin αvβ6 and Co-Expressing the Chemokine Receptor CXCR2 Demonstrate Enhanced Homing and Efficacy against Several Solid Malignancies. Cancers (Basel). 2019;11(5).
Liu G, Rui W, Zheng H, Huang D, Yu F, Zhang Y, et al. CXCR2-modified CAR-T cells have enhanced trafficking ability that improves treatment of hepatocellular carcinoma. Eur J Immunol. 2020;50(5):712–24.
doi: 10.1002/eji.201948457
Zhang B-L, Qin D-Y, Mo Z-M, Li Y, Wei W, Wang Y-S, et al. Hurdles of CAR-T cell-based cancer immunotherapy directed against solid tumors. Sci China Life Sci. 2016;59(4):340–8.
doi: 10.1007/s11427-016-5027-4
Caruana I, Savoldo B, Hoyos V, Weber G, Liu H, Kim ES, et al. Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes. Nat Med. 2015;21(5):524–9.
doi: 10.1038/nm.3833
Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423–37.
doi: 10.1038/nm.3394
Yin Y, Boesteanu AC, Binder ZA, Xu C, Reid RA, Rodriguez JL, et al. Checkpoint blockade reverses anergy in IL-13Rα2 humanized scFv-Based CAR T cells to treat murine and canine gliomas. Mol Ther oncolytics. 2018;11:20–38.
doi: 10.1016/j.omto.2018.08.002
June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Science. 2018;359(6382):1361–5.
doi: 10.1126/science.aar6711
Sadelain M, Brentjens R, Rivière I. The basic principles of chimeric antigen receptor design. Cancer Discov. 2013;3(4):388–98.
doi: 10.1158/2159-8290.CD-12-0548
Grosser R, Cherkassky L, Chintala N, Adusumilli PS. Combination immunotherapy with CAR T Cells and checkpoint blockade for the treatment of solid tumors. Cancer Cell. 2019;36(5):471–82.
doi: 10.1016/j.ccell.2019.09.006
Li AM, Hucks GE, Dinofia AM, Seif AE, Teachey DT, Baniewicz D, et al. Checkpoint Inhibitors Augment CD19-Directed Chimeric Antigen Receptor (CAR) T Cell Therapy in Relapsed B-Cell Acute Lymphoblastic Leukemia. Blood [Internet]. 2018;132:556. Available from: https://www.sciencedirect.com/science/article/pii/S0006497119366054
Chong EA, Melenhorst JJ, Lacey SF, Ambrose DE, Gonzalez V, Levine BL, et al. PD-1 blockade modulates chimeric antigen receptor (CAR)-modified T cells: refueling the CAR. Vol. 129, Blood. United States; 2017. p. 1039–41.
Adusumilli PS, Zauderer MG, Rivière I, Solomon SB, Rusch VW, O’Cearbhaill RE, et al. A Phase I trial of regional mesothelin-targeted CAR T-cell therapy in patients with malignant pleural disease, in combination with the Anti-PD-1 agent pembrolizumab. Cancer Discov. 2021;11(11):2748–63.
doi: 10.1158/2159-8290.CD-21-0407
Kloss CC, Lee J, Zhang A, Chen F, Melenhorst JJ, Lacey SF, et al. Dominant-negative TGF-β receptor enhances PSMA-targeted human CAR T cell proliferation and augments prostate cancer eradication. Mol Ther. 2018;26(7):1855–66.
doi: 10.1016/j.ymthe.2018.05.003
Lamers CH, Sleijfer S, van Steenbergen S, van Elzakker P, van Krimpen B, Groot C, et al. Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity. Mol Ther. 2013;21(4):904–12.
doi: 10.1038/mt.2013.17
Harlin H, Meng Y, Peterson AC, Zha Y, Tretiakova M, Slingluff C, et al. Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment. Cancer Res. 2009;69(7):3077–85.
doi: 10.1158/0008-5472.CAN-08-2281
Goodwin JS, Bankhurst AD, Messner RP. Suppression of human T-cell mitogenesis by prostaglandin. existence of a prostaglandin-producing suppressor cell. J Exp Med. 1977;146(6):1719–34.
doi: 10.1084/jem.146.6.1719
Su Y, Huang X, Raskovalova T, Zacharia L, Lokshin A, Jackson E, et al. Cooperation of adenosine and prostaglandin E2 (PGE2) in amplification of cAMP-PKA signaling and immunosuppression. Cancer Immunol Immunother. 2008;57(11):1611–23.
doi: 10.1007/s00262-008-0494-5
Newick K, O’Brien S, Sun J, Kapoor V, Maceyko S, Lo A, et al. Augmentation of CAR T-cell trafficking and antitumor efficacy by blocking protein kinase a localization. Cancer Immunol Res. 2016;4(6):541–51.
doi: 10.1158/2326-6066.CIR-15-0263
Nishio N, Diaconu I, Liu H, Cerullo V, Caruana I, Hoyos V, et al. Armed oncolytic virus enhances immune functions of chimeric antigen receptor-modified T cells in solid tumors. Cancer Res. 2014;74(18):5195–205.
doi: 10.1158/0008-5472.CAN-14-0697
Wang L-CS, Lo A, Scholler J, Sun J, Majumdar RS, Kapoor V, et al. Targeting fibroblast activation protein in tumor stroma with chimeric antigen receptor T cells can inhibit tumor growth and augment host immunity without severe toxicity. Cancer Immunol Res. 2014;2(2):154–66.
doi: 10.1158/2326-6066.CIR-13-0027
Bollard CM, Rössig C, Calonge MJ, Huls MH, Wagner H-J, Massague J, et al. Adapting a transforming growth factor beta-related tumor protection strategy to enhance antitumor immunity. Blood. 2002;99(9):3179–87.
doi: 10.1182/blood.V99.9.3179
Chmielewski M, Hombach AA, Abken H. Of CARs and TRUCKs: chimeric antigen receptor (CAR) T cells engineered with an inducible cytokine to modulate the tumor stroma. Immunol Rev. 2014;257(1):83–90.
doi: 10.1111/imr.12125
Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell. 2015;27(4):450–61.
doi: 10.1016/j.ccell.2015.03.001
Moon EK, Wang L-C, Dolfi DV, Wilson CB, Ranganathan R, Sun J, et al. Multifactorial T-cell hypofunction that is reversible can limit the efficacy of chimeric antigen receptor-transduced human T cells in solid tumors. Clin cancer Res an Off J Am Assoc Cancer Res. 2014;20(16):4262–73.
doi: 10.1158/1078-0432.CCR-13-2627
Campbell PJ, Yachida S, Mudie LJ, Stephens PJ, Pleasance ED, Stebbings LA, et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature. 2010;467(7319):1109–13.
doi: 10.1038/nature09460
Navai SA, Ahmed N. Targeting the tumour profile using broad spectrum chimaeric antigen receptor T-cells. Biochem Soc Trans. 2016;44(2):391–6.
doi: 10.1042/BST20150266
Hegde M, Corder A, Chow KKH, Mukherjee M, Ashoori A, Kew Y, et al. Combinational targeting offsets antigen escape and enhances effector functions of adoptively transferred T cells in glioblastoma. Mol Ther. 2013;21(11):2087–101.
doi: 10.1038/mt.2013.185
Kakarla S, Chow KKH, Mata M, Shaffer DR, Song X-T, Wu M-F, et al. Antitumor effects of chimeric receptor engineered human T cells directed to tumor stroma. Mol Ther. 2013;21(8):1611–20.
doi: 10.1038/mt.2013.110
Kloss CC, Condomines M, Cartellieri M, Bachmann M, Sadelain M. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat Biotechnol. 2013;31(1):71–5.
doi: 10.1038/nbt.2459
Han X, Wang Y, Wei J, Han W. Multi-antigen-targeted chimeric antigen receptor T cells for cancer therapy. J Hematol Oncol [Internet]. 2019 Nov 29 [cited 2022 Sep 28];12(1):1–10. Available from: https://jhoonline.biomedcentral.com/articles/ https://doi.org/10.1186/s13045-019-0813-7
Grada Z, Hegde M, Byrd T, Shaffer DR, Ghazi A, Brawley VS, et al. TanCAR: A novel bispecific chimeric antigen receptor for cancer immunotherapy. Mol Ther Nucleic Acids. 2013;2(7): e105.
doi: 10.1038/mtna.2013.32
Hegde M, Wakefield A, Brawley V, Grada Z, Byrd T, Chow K, et al. Genetic modification of T cells with a novel bispecific chimeric antigen receptor to enhance the control of high-grade glioma (HGG). J Clin Oncol. 2014;20(32):10027.
doi: 10.1200/jco.2014.32.15_suppl.10027
Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J 2021 114 [Internet]. 2021 Apr 6 [cited 2022 Sep 28];11(4):1–11. Available from: https://www.nature.com/articles/s41408-021-00459-7
Suarez ER, Chang DK, Sun J, Sui J, Freeman GJ, Signoretti S, et al. Chimeric antigen receptor T cells secreting anti-PD-L1 antibodies more effectively regress renal cell carcinoma in a humanized mouse model. Oncotarget. 2016;7(23):34341–55.
doi: 10.18632/oncotarget.9114
Fisher DT, Appenheimer MM, Evans SS. The two faces of IL-6 in the tumor microenvironment. Semin Immunol. 2014;26(1):38–47.
doi: 10.1016/j.smim.2014.01.008
John LB, Kershaw MH, Darcy PK. Blockade of PD-1 immunosuppression boosts CAR T-cell therapy. Oncoimmunology. 2013;2(10): e26286.
doi: 10.4161/onci.26286
Zhang L, Kerkar SP, Yu Z, Zheng Z, Yang S, Restifo NP, et al. Improving adoptive T cell therapy by targeting and controlling IL-12 expression to the tumor environment. Mol Ther. 2011;19(4):751–9.
doi: 10.1038/mt.2010.313
Kerkar SP, Muranski P, Kaiser A, Boni A, Sanchez-Perez L, Yu Z, et al. Tumor-specific CD8+ T cells expressing interleukin-12 eradicate established cancers in lymphodepleted hosts. Cancer Res. 2010;70(17):6725–34.
doi: 10.1158/0008-5472.CAN-10-0735
Chmielewski M, Kopecky C, Hombach AA, Abken H. IL-12 release by engineered T cells expressing chimeric antigen receptors can effectively Muster an antigen-independent macrophage response on tumor cells that have shut down tumor antigen expression. Cancer Res. 2011;71(17):5697–706.
doi: 10.1158/0008-5472.CAN-11-0103
Pegram HJ, Lee JC, Hayman EG, Imperato GH, Tedder TF, Sadelain M, et al. Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood. 2012;119(18):4133–41.
doi: 10.1182/blood-2011-12-400044
Carroll RG, Carpenito C, Shan X, Danet-Desnoyers G, Liu R, Jiang S, et al. Distinct effects of IL-18 on the engraftment and function of human effector CD8 T cells and regulatory T cells. PLoS ONE. 2008;3(9): e3289.
doi: 10.1371/journal.pone.0003289
Vodnala SK, Eil R, Kishton RJ, Sukumar M, Yamamoto TN, Ha N-H, et al. T cell stemness and dysfunction in tumors are triggered by a common mechanism. Science. 2019 363 (6434).
Brentjens R, Yeh R, Bernal Y, Riviere I, Sadelain M. Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells: case report of an unforeseen adverse event in a phase I clinical trial. Vol. 18, Molecular therapy : the journal of the American Society of Gene Therapy. United States; 2010. 666–8.
Maude SL, Barrett D, Teachey DT, Grupp SA. Managing cytokine release syndrome associated with novel T cell-engaging therapies. Cancer J. 2014;20(2):119–22.
doi: 10.1097/PPO.0000000000000035
Lee DW, Gardner R, Porter DL, Louis CU, Ahmed N, Jensen M, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014;124(2):188–95.
doi: 10.1182/blood-2014-05-552729
Shimabukuro-Vornhagen A, Gödel P, Subklewe M, Stemmler HJ, Schlößer HA, Schlaak M, et al. Cytokine release syndrome. J Immunother cancer. 2018;6(1):56.
doi: 10.1186/s40425-018-0343-9
Giavridis T, van der Stegen SJC, Eyquem J, Hamieh M, Piersigilli A, Sadelain M. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat Med. 2018;24(6):731–8.
doi: 10.1038/s41591-018-0041-7
Hay KA, Hanafi L-A, Li D, Gust J, Liles WC, Wurfel MM, et al. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy. Blood. 2017;130(21):2295–306.
doi: 10.1182/blood-2017-06-793141
Neelapu SS, Tummala S, Kebriaei P, Wierda W, Gutierrez C, Locke FL, et al. Chimeric antigen receptor T-cell therapy — assessment and management of toxicities. Nat Rev Clin Oncol. 2018;15(1):47–62. https://doi.org/10.1038/nrclinonc.2017.148 .
doi: 10.1038/nrclinonc.2017.148
Lee DW, Santomasso BD, Locke FL, Ghobadi A, Turtle CJ, Brudno JN, et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol blood marrow Transplant J Am Soc Blood Marrow Transplant. 2019;25(4):625–38.
doi: 10.1016/j.bbmt.2018.12.758
Santomasso B, Bachier C, Westin J, Rezvani K, Shpall EJ. The other side of CAR T-Cell therapy: cytokine release syndrome, neurologic toxicity, and financial burden. Am Soc Clin Oncol Educ B. 2019;39:433–44.
doi: 10.1200/EDBK_238691
Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al. Tisagenlecleucel in children and young adults with B-Cell lymphoblastic leukemia. N Engl J Med. 2018;378(5):439–48.
doi: 10.1056/NEJMoa1709866
Schuster SJ, Svoboda J, Chong EA, Nasta SD, Mato AR, Anak Ö, et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med. 2017;377(26):2545–54.
doi: 10.1056/NEJMoa1708566
Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, et al. Axicabtagene ciloleucel CAR T-Cell therapy in refractory large B-Cell lymphoma. N Engl J Med. 2017;377(26):2531–44.
doi: 10.1056/NEJMoa1707447
Raje N, Berdeja J, Lin Y, Siegel D, Jagannath S, Madduri D, et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N Engl J Med. 2019;380(18):1726–37.
doi: 10.1056/NEJMoa1817226
Santomasso BD, Park JH, Salloum D, Riviere I, Flynn J, Mead E, et al. Clinical and biological correlates of neurotoxicity associated with CAR T-cell therapy in patients with B-cell acute lymphoblastic leukemia. Cancer Discov. 2018;8(8):958–71.
doi: 10.1158/2159-8290.CD-17-1319
Gust J, Hay KA, Hanafi L-A, Li D, Myerson D, Gonzalez-Cuyar LF, et al. Endothelial activation and blood-brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells. Cancer Discov. 2017;7(12):1404–19.
doi: 10.1158/2159-8290.CD-17-0698
Taraseviciute A, Tkachev V, Ponce R, Turtle CJ, Snyder JM, Liggitt HD, et al. Chimeric antigen receptor T Cell-mediated neurotoxicity in nonhuman primates. Cancer Discov. 2018;8(6):750–63.
doi: 10.1158/2159-8290.CD-17-1368
Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 2006;7(1):41–53.
doi: 10.1038/nrn1824
de Vries HE, Blom-Roosemalen MC, van Oosten M, de Boer AG, van Berkel TJ, Breimer DD, et al. The influence of cytokines on the integrity of the blood-brain barrier in vitro. J Neuroimmunol. 1996;64(1):37–43.
doi: 10.1016/0165-5728(95)00148-4
Kymriah | European Medicines Agency [Internet]. [cited 2022 Nov 30]. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/kymriah
Yescarta | European Medicines Agency [Internet]. [cited 2022 Nov 30]. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/yescarta
Cruz CR, Hanley PJ, Liu H, Torrano V, Lin Y-F, Arce JA, et al. Adverse events following infusion of T cells for adoptive immunotherapy: a 10-year experience. Cytotherapy. 2010;12(6):743–9.
doi: 10.3109/14653241003709686
Brudno JN, Kochenderfer JN. Toxicities of chimeric antigen receptor T cells: recognition and management. Blood. 2016;127(26):3321–30.
doi: 10.1182/blood-2016-04-703751
Porter DL, Hwang W-T, Frey N V, Lacey SF, Shaw PA, Loren AW, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med. 2015 7 (303):303ra139.
Kochenderfer JN, Wilson WH, Janik JE, Dudley ME, Stetler-Stevenson M, Feldman SA, et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood. 2010;116(20):4099–102.
doi: 10.1182/blood-2010-04-281931
Davila ML, Kloss CC, Gunset G, Sadelain M. CD19 CAR-targeted T cells induce long-term remission and B Cell Aplasia in an immunocompetent mouse model of B cell acute lymphoblastic leukemia. PLoS ONE. 2013;8(4): e61338.
doi: 10.1371/journal.pone.0061338
Park JH, Rivière I, Gonen M, Wang X, Sénéchal B, Curran KJ, et al. Long-Term Follow-up of CD19 CAR Therapy in acute lymphoblastic leukemia. N Engl J Med. 2018;378(5):449–59.
doi: 10.1056/NEJMoa1709919
Doan A, Pulsipher MA. Hypogammaglobulinemia due to CAR T-cell therapy. Vol. 65, Pediatric blood and cancer. United States; 2018.
Bhoj VG, Arhontoulis D, Wertheim G, Capobianchi J, Callahan CA, Ellebrecht CT, et al. Persistence of long-lived plasma cells and humoral immunity in individuals responding to CD19-directed CAR T-cell therapy. Blood. 2016;128(3):360–70.
doi: 10.1182/blood-2016-01-694356
Zeiser R, Blazar BR. Acute graft-versus-host disease - biologic process, prevention, and therapy. N Engl J Med. 2017;377(22):2167–79.
doi: 10.1056/NEJMra1609337
Ferrara JLM, Levine JE, Reddy P, Holler E. Graft-versus-host disease. Lancet (London, England). 2009;373(9674):1550–61.
doi: 10.1016/S0140-6736(09)60237-3
Kay MA. State-of-the-art gene-based therapies: the road ahead. Nat Rev Genet. 2011;12(5):316–28.
doi: 10.1038/nrg2971
Stewart MP, Sharei A, Ding X, Sahay G, Langer R, Jensen KF. In vitro and ex vivo strategies for intracellular delivery. Nature [Internet]. 2016;538(7624):183–92. Available from: https://doi.org/10.1038/nature19764
Huang C-H, Lee K-C, Doudna JA. Applications of CRISPR-cas enzymes in cancer therapeutics and detection. Trends in cancer. 2018;4(7):499–512.
doi: 10.1016/j.trecan.2018.05.006
Copelan EA. Hematopoietic stem-cell transplantation. N Engl J Med. 2006;354(17):1813–26.
doi: 10.1056/NEJMra052638
Shlomchik WD. Graft-versus-host disease. Nat Rev Immunol. 2007;7(5):340–52.
doi: 10.1038/nri2000
Depil S, Duchateau P, Grupp SA, Mufti G, Poirot L. “Off-the-shelf” allogeneic CAR T cells: development and challenges. Nat Rev Drug Discov. 2020;19(3):185–99.
doi: 10.1038/s41573-019-0051-2
Davila ML, Riviere I, Wang X, Bartido S, Park J, Curran K, et al. Efficacy and toxicity management of 19–28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med 2014 6(224):224ra25.
Brudno JN, Somerville RPT, Shi V, Rose JJ, Halverson DC, Fowler DH, et al. Allogeneic T cells that express an Anti-CD19 chimeric antigen receptor induce remissions of B-Cell malignancies that progress after allogeneic hematopoietic stem-cell transplantation without causing graft-versus-host disease. J Clin Oncol Off J Am Soc Clin Oncol. 2016;34(10):1112–21.
doi: 10.1200/JCO.2015.64.5929
Chen Y, Cheng Y, Suo P, Yan C, Wang Y, Chen Y, et al. Donor-derived CD19-targeted T cell infusion induces minimal residual disease-negative remission in relapsed B-cell acute lymphoblastic leukaemia with no response to donor lymphocyte infusions after haploidentical haematopoietic stem cell transplantation. Br J Haematol. 2017;179(4):598–605.
doi: 10.1111/bjh.14923
Zhang C, Wang X-Q, Zhang R-L, Liu F, Wang Y, Yan Z-L, et al. Donor-derived CD19 CAR-T cell therapy of relapse of CD19-positive B-ALL post allotransplant. Leukemia. 2021;35(6):1563–70.
doi: 10.1038/s41375-020-01056-6
Köhl U, Arsenieva S, Holzinger A, Abken H. CAR T cells in trials: recent achievements and challenges that remain in the production of modified T cells for clinical applications. Hum Gene Ther. 2018;29(5):559–68.
doi: 10.1089/hum.2017.254
Papathanasiou MM, Stamatis C, Lakelin M, Farid S, Titchener-Hooker N, Shah N. Autologous CAR T-cell therapies supply chain: challenges and opportunities? Cancer Gene Ther. 2020;27(10–11):799–809.
doi: 10.1038/s41417-019-0157-z
Ren J, Liu X, Fang C, Jiang S, June CH, Zhao Y. Multiplex genome editing to generate universal CAR T cells Resistant to PD1 inhibition. Clin cancer Res an Off J Am Assoc Cancer Res. 2017;23(9):2255–66.
doi: 10.1158/1078-0432.CCR-16-1300
Cooper M, Choi J, Staser K, Ritchey J, Devenport J, Eckardt K, et al. An “off-the-shelf” fratricide-resistant CAR-T for the treatment of T cell hematologic malignancies. Leukemia. 2018;1:32.
Poirot L, Philip B, Schiffer-Mannioui C, Le Clerre D, Chion-Sotinel I, Derniame S, et al. Multiplex genome-edited T-cell manufacturing platform for “Off-the-Shelf” adoptive T-cell immunotherapies. Cancer Res. 2015;75(18):3853–64.
doi: 10.1158/0008-5472.CAN-14-3321
Qasim W, Zhan H, Samarasinghe S, Adams S, Amrolia P, Stafford S, et al. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Sci Transl Med. 2017 9(374).
Kershaw MH, Westwood JA, Parker LL, Wang G, Eshhar Z, Mavroukakis SA, et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin cancer Res an Off J Am Assoc Cancer Res. 2006;12(20 Pt 1):6106–15.
doi: 10.1158/1078-0432.CCR-06-1183
Jensen MC, Popplewell L, Cooper LJ, DiGiusto D, Kalos M, Ostberg JR, et al. Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected T cells in humans. Biol blood marrow Transplant J Am Soc Blood Marrow Transplant. 2010;16(9):1245–56.
doi: 10.1016/j.bbmt.2010.03.014
Lamers CHJ, Willemsen R, van Elzakker P, van Steenbergen-Langeveld S, Broertjes M, Oosterwijk-Wakka J, et al. Immune responses to transgene and retroviral vector in patients treated with ex vivo-engineered T cells. Blood. 2011;117(1):72–82.
doi: 10.1182/blood-2010-07-294520
Maude SL, Barrett DM, Ambrose DE, Rheingold SR, Aplenc R, Teachey DT, et al. Efficacy and Safety of Humanized Chimeric Antigen Receptor (CAR)-Modified T Cells Targeting CD19 in Children with Relapsed/Refractory ALL. Blood [Internet]. 2015; 126(23):683. Available from: https://www.sciencedirect.com/science/article/pii/S0006497118476628
Kohn DB, Sadelain M, Glorioso JC. Occurrence of leukaemia following gene therapy of X-linked SCID. Nat Rev Cancer. 2003;3(7):477–88.
doi: 10.1038/nrc1122
Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science. 2003;302(5644):415–9.
doi: 10.1126/science.1088547
Hacein-Bey-Abina S, Garrigue A, Wang GP, Soulier J, Lim A, Morillon E, et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest. 2008;118(9):3132–42.
doi: 10.1172/JCI35700
Stein S, Ott MG, Schultze-Strasser S, Jauch A, Burwinkel B, Kinner A, et al. Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease. Nat Med. 2010;16(2):198–204.
doi: 10.1038/nm.2088
Howe SJ, Mansour MR, Schwarzwaelder K, Bartholomae C, Hubank M, Kempski H, et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest. 2008;118(9):3143–50.
doi: 10.1172/JCI35798
Scholler J, Brady TL, Binder-Scholl G, Hwang W-T, Plesa G, Hege KM, et al. Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells. Sci Transl Med. 2012 4 (132):132ra53.
Liu Y, Cao X. Immunosuppressive cells in tumor immune escape and metastasis. J Mol Med (Berl). 2016;94(5):509–22.
doi: 10.1007/s00109-015-1376-x
Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther. 2010;18(4):843–51.
doi: 10.1038/mt.2010.24
Lamers CHJ, Sleijfer S, Vulto AG, Kruit WHJ, Kliffen M, Debets R, et al. Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. Vol. 24, Journal of clinical oncology : official journal of the American Society of Clinical Oncology. United States; 2006. e20–2.
Hill JA, Li D, Hay KA, Green ML, Cherian S, Chen X, et al. Infectious complications of CD19-targeted chimeric antigen receptor-modified T-cell immunotherapy. Blood. 2018;131(1):121–30.
doi: 10.1182/blood-2017-07-793760
Teachey DT, Bishop MR, Maloney DG, Grupp SA. Toxicity management after chimeric antigen receptor T cell therapy: one size does not fit “all.” Nat Rev Clin Oncol. 2018;15(4):218.
doi: 10.1038/nrclinonc.2018.19
June CH, Sadelain M. Chimeric antigen receptor therapy. N Engl J Med. 2018;379(1):64–73.
doi: 10.1056/NEJMra1706169
Abboud R, Keller J, Slade M, DiPersio JF, Westervelt P, Rettig MP, et al. Severe cytokine-release syndrome after T Cell-replete peripheral blood haploidentical donor transplantation Is associated with poor survival and Anti-IL-6 therapy Is safe and well tolerated. Biol blood marrow Transplant J Am Soc Blood Marrow Transplant. 2016;22(10):1851–60.
doi: 10.1016/j.bbmt.2016.06.010
Chen F, Teachey DT, Pequignot E, Frey N, Porter D, Maude SL, et al. Measuring IL-6 and sIL-6R in serum from patients treated with tocilizumab and/or siltuximab following CAR T cell therapy. J Immunol Methods. 2016;434:1–8.
doi: 10.1016/j.jim.2016.03.005
Nishimoto N, Terao K, Mima T, Nakahara H, Takagi N, Kakehi T. Mechanisms and pathologic significances in increase in serum interleukin-6 (IL-6) and soluble IL-6 receptor after administration of an anti-IL-6 receptor antibody, tocilizumab, in patients with rheumatoid arthritis and Castleman disease. Blood. 2008;112(10):3959–64.
doi: 10.1182/blood-2008-05-155846
lplizka. Eight Guiding Principles for Effective Use of IVIG for Patients with Primary Immunodeficiency. [cited 2022 Nov 27]; Available from: http://www.jacionline.org/article/S0091 -
Wilkie S, van Schalkwyk MCI, Hobbs S, Davies DM, van der Stegen SJC, Pereira ACP, et al. Dual targeting of ErbB2 and MUC1 in breast cancer using chimeric antigen receptors engineered to provide complementary signaling. J Clin Immunol. 2012;32(5):1059–70.
doi: 10.1007/s10875-012-9689-9
Wang X, Chang W-C, Wong CW, Colcher D, Sherman M, Ostberg JR, et al. A transgene-encoded cell surface polypeptide for selection, in vivo tracking, and ablation of engineered cells. Blood. 2011;118(5):1255–63.
doi: 10.1182/blood-2011-02-337360
Philip B, Kokalaki E, Mekkaoui L, Thomas S, Straathof K, Flutter B, et al. A highly compact epitope-based marker/suicide gene for easier and safer T-cell therapy. Blood. 2014;124(8):1277–87.
doi: 10.1182/blood-2014-01-545020
Marin V, Cribioli E, Philip B, Tettamanti S, Pizzitola I, Biondi A, et al. Comparison of different suicide-gene strategies for the safety improvement of genetically manipulated T cells. Hum Gene Ther Methods. 2012;23(6):376–86.
doi: 10.1089/hgtb.2012.050
Safarzadeh Kozani P, Safarzadeh Kozani P, O’Connor RS. In like a lamb; out like a lion: marching car T cells toward enhanced efficacy in B-ALL. Mol Cancer Ther. 2021;20(7):1223–33.
doi: 10.1158/1535-7163.MCT-20-1089
Fry TJ, Shah NN, Orentas RJ, Stetler-Stevenson M, Yuan CM, Ramakrishna S, et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med. 2018;24(1):20–8.
doi: 10.1038/nm.4441
Qin H, Ramakrishna S, Nguyen S, Fountaine TJ, Ponduri A, Stetler-Stevenson M, et al. Preclinical development of bivalent chimeric antigen receptors targeting both CD19 and CD22. Mol Ther oncolytics. 2018;11:127–37.
doi: 10.1016/j.omto.2018.10.006
De Bousser E, Callewaert N, Festjens N. T Cell Engaging Immunotherapies, Highlighting Chimeric Antigen Receptor (CAR) T Cell Therapy. Cancers (Basel). 202113(23).

Auteurs

Fatimah Rababah (F)

Faculty of Medicine, Yarmouk University, Irbid, Jordan.

Taqwa Alabduh (T)

Faculty of Medicine, Yarmouk University, Irbid, Jordan.

AlHareth Awawdeh (A)

Faculty of Medicine, Yarmouk University, Irbid, Jordan.

Tareq Shatnawi (T)

Faculty of Medicine, Yarmouk University, Irbid, Jordan.

Maha Al-Shdaifat (M)

Faculty of Medicine, Yarmouk University, Irbid, Jordan.

Elana Ibdah (E)

Faculty of Medicine, Yarmouk University, Irbid, Jordan.

Shatha Shatnawi (S)

Faculty of Medicine, Yarmouk University, Irbid, Jordan.

Yahia AbuZetun (Y)

Faculty of Medicine, Yarmouk University, Irbid, Jordan.

Ahmed Mohamed Helaly (AM)

Faculty of Medicine, Yarmouk University, Irbid, Jordan. ahmedhelaly@mans.edu.eg.
Forensic and Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt. ahmedhelaly@mans.edu.eg.

Doaa S Ghorab (DS)

Faculty of Medicine, Yarmouk University, Irbid, Jordan.
Pathology Department, Mansoura University, Mansoura, Egypt.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH