[Fetal electrocardiogram signal extraction and analysis method combining fast independent component analysis algorithm and convolutional neural network].
Convolutional neural network
Fast independent component analysis
Fetal electrocardiogram
QRS complex waves
Singular value decomposition
Journal
Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi
ISSN: 1001-5515
Titre abrégé: Sheng Wu Yi Xue Gong Cheng Xue Za Zhi
Pays: China
ID NLM: 9426398
Informations de publication
Date de publication:
25 Feb 2023
25 Feb 2023
Historique:
entrez:
28
2
2023
pubmed:
1
3
2023
medline:
3
3
2023
Statut:
ppublish
Résumé
Fetal electrocardiogram (ECG) signals provide important clinical information for early diagnosis and intervention of fetal abnormalities. In this paper, we propose a new method for fetal ECG signal extraction and analysis. Firstly, an improved fast independent component analysis method and singular value decomposition algorithm are combined to extract high-quality fetal ECG signals and solve the waveform missing problem. Secondly, a novel convolutional neural network model is applied to identify the QRS complex waves of fetal ECG signals and effectively solve the waveform overlap problem. Finally, high quality extraction of fetal ECG signals and intelligent recognition of fetal QRS complex waves are achieved. The method proposed in this paper was validated with the data from the PhysioNet computing in cardiology challenge 2013 database of the Complex Physiological Signals Research Resource Network. The results show that the average sensitivity and positive prediction values of the extraction algorithm are 98.21% and 99.52%, respectively, and the average sensitivity and positive prediction values of the QRS complex waves recognition algorithm are 94.14% and 95.80%, respectively, which are better than those of other research results. In conclusion, the algorithm and model proposed in this paper have some practical significance and may provide a theoretical basis for clinical medical decision making in the future. 胎儿心电信号为胎儿异常情况的早期诊断和干预提供了重要的临床信息,本文提出一种胎儿心电信号提取与分析的新方法。首先,将改进的快速独立成分分析(FastICA)法和奇异值分解(SVD)算法结合,来提取高质量胎儿心电信号并解决波形缺失问题。其次,运用一种新的卷积神经网络(CNN)模型识别胎儿心电信号QRS复合波,并有效解决波形重叠问题。最终,实现胎儿心电信号的高质量提取与胎儿QRS复合波的智能识别。以复杂生理信号研究资源网2013年心脏病学计算挑战赛(PhysioNet2013)数据库资料对本文所提方法进行验证,结果表明该提取算法平均灵敏度与阳性预测值为98.21%和99.52%;QRS复合波识别算法平均灵敏度与阳性预测值为94.14%和95.80%,相较于其他研究成果均有较好的提升。综上,本文提出的算法与模型具有一定的实践意义,今后或可为临床医学决策提供理论依据。.
Autres résumés
Type: Publisher
(chi)
胎儿心电信号为胎儿异常情况的早期诊断和干预提供了重要的临床信息,本文提出一种胎儿心电信号提取与分析的新方法。首先,将改进的快速独立成分分析(FastICA)法和奇异值分解(SVD)算法结合,来提取高质量胎儿心电信号并解决波形缺失问题。其次,运用一种新的卷积神经网络(CNN)模型识别胎儿心电信号QRS复合波,并有效解决波形重叠问题。最终,实现胎儿心电信号的高质量提取与胎儿QRS复合波的智能识别。以复杂生理信号研究资源网2013年心脏病学计算挑战赛(PhysioNet2013)数据库资料对本文所提方法进行验证,结果表明该提取算法平均灵敏度与阳性预测值为98.21%和99.52%;QRS复合波识别算法平均灵敏度与阳性预测值为94.14%和95.80%,相较于其他研究成果均有较好的提升。综上,本文提出的算法与模型具有一定的实践意义,今后或可为临床医学决策提供理论依据。.
Identifiants
pubmed: 36854548
doi: 10.7507/1001-5515.202210071
pmc: PMC9989759
doi:
Types de publication
English Abstract
Journal Article
Langues
chi
Sous-ensembles de citation
IM
Pagination
51-59Références
Physiol Meas. 2022 Mar 21;43(2):
pubmed: 35073532
Comput Math Methods Med. 2018 May 17;2018:7061456
pubmed: 29887913
Physiol Meas. 2018 Apr 20;39(4):045004
pubmed: 29485406
Med Biol Eng Comput. 2020 Feb;58(2):419-432
pubmed: 31858419
Echocardiography. 2021 Jun;38(6):974-981
pubmed: 34018638
Microsyst Nanoeng. 2021 Mar 16;7:24
pubmed: 34567738
Sensors (Basel). 2022 Apr 26;22(9):
pubmed: 35591004
Entropy (Basel). 2021 Jun 30;23(7):
pubmed: 34209158
Biomed Tech (Berl). 2012 Oct;57(5):383-94
pubmed: 25854665
J Biomed Phys Eng. 2021 Apr 01;11(2):197-204
pubmed: 33945588
Sensors (Basel). 2020 Jul 04;20(13):
pubmed: 32635568
Am J Obstet Gynecol. 2020 Aug;223(2):244.e1-244.e12
pubmed: 32087146
PLoS One. 2022 Apr 11;17(4):e0266807
pubmed: 35404946
Am J Crit Care. 2012 Sep;21(5):370-1
pubmed: 22941712