Beta and gamma binaural beats enhance auditory sentence comprehension.
Journal
Psychological research
ISSN: 1430-2772
Titre abrégé: Psychol Res
Pays: Germany
ID NLM: 0435062
Informations de publication
Date de publication:
Oct 2023
Oct 2023
Historique:
received:
23
08
2022
accepted:
11
02
2023
medline:
28
8
2023
pubmed:
2
3
2023
entrez:
1
3
2023
Statut:
ppublish
Résumé
Binaural beats-an auditory illusion produced when two pure tones of slightly different frequencies are dichotically presented-have been shown to modulate various cognitive and psychological states. Here, we investigated the effects of binaural beat stimulation on auditory sentence processing that required interpretation of syntactic relations (Experiment 1) or an evaluation of syntactic well formedness (Experiment 2) with a large cohort of healthy young adults (N = 200). In both experiments, participants performed a language task after listening to one of four sounds (i.e., between-subject design): theta (7 Hz), beta (18 Hz), and gamma (40 Hz) binaural beats embedded in music, or the music only (baseline). In Experiment 1, 100 participants indicated the gender of a noun linked to a transitive action verb in spoken sentences containing either a subject or object-relative center-embedded clause. We found that both beta and gamma binaural beats yielded better performance, compared to the baseline, especially for syntactically more complex object-relative sentences. To determine if the binaural beat effect can be generalized to another type of syntactic analysis, we conducted Experiment 2 in which another 100 participants indicated whether or not there was a grammatical error in spoken sentences. However, none of the binaural beats yielded better performance for this task indicating that the benefit of beta and gamma binaural beats may be specific to the interpretation of syntactic relations. Together, we demonstrate, for the first time, the positive impact of binaural beats on auditory language comprehension. Both theoretical and practical implications are discussed.
Identifiants
pubmed: 36854935
doi: 10.1007/s00426-023-01808-w
pii: 10.1007/s00426-023-01808-w
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2218-2227Subventions
Organisme : Neuroscience Innovation Foundation
ID : 22-004
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Ala, T. S., Ahmadi-Pajouh, M. A., & Nasrabadi, A. M. (2018). Cumulative effects of theta binaural beats on brain power and functional connectivity. Biomedical Signal Processing and Control, 42, 242–252. https://doi.org/10.1016/j.bspc.2018.01.022
doi: 10.1016/j.bspc.2018.01.022
Bastiaansen, M., & Hagoort, P. (2003). Event-induced theta responses as a window on the dynamics of memory. Cortex, 39(4–5), 967–992. https://doi.org/10.1016/S00109452(08)70876
doi: 10.1016/S00109452(08)70876
pubmed: 14584562
Bastiaansen, M., & Hagoort, P. (2015). Frequency-based segregation of syntactic and semantic unification during online sentence level language comprehension. Journal of Cognitive Neuroscience, 27(11), 2095–2107. https://doi.org/10.1162/jocn_a_00829
doi: 10.1162/jocn_a_00829
pubmed: 26042498
Bastiaansen, M., van Berkum, J. J., & Hagoort, P. (2002). Event-related theta power increases in the human EEG during online sentence processing. Neuroscience Letters, 323(1), 13–16. https://doi.org/10.1016/s0304-3940(01)02535-6
doi: 10.1016/s0304-3940(01)02535-6
pubmed: 11911979
Bastiaansen, M., Magyari, L., & Hagoort, P. (2010). Syntactic unification operations are reflected in oscillatory dynamics during on-line sentence comprehension. Journal of Cognitive Neuroscience, 22(7), 1333–1347. https://doi.org/10.1162/jocn.2009.21283
doi: 10.1162/jocn.2009.21283
pubmed: 19580386
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software. https://doi.org/10.18637/jss.v067.i01
doi: 10.18637/jss.v067.i01
Beauchene, C., Abaid, N., Moran, R., Diana, R. A., & Leonessa, A. (2016). The effect of binaural beats on visuospatial working memory and cortical connectivity. PLoS ONE, 11(11), 0166630.
doi: 10.1371/journal.pone.0166630
Beauchene, C., Abaid, N., Moran, R., Diana, R. A., & Leonessa, A. (2017). The effect of binaural beats on verbal working memory and cortical connectivity. Journal of Neural Engineering, 14(2), 026014.
doi: 10.1088/1741-2552/aa5d67
pubmed: 28145275
Becher, A. K., Höhne, M., Axmacher, N., Chaieb, L., Elger, C. E., & Fell, J. (2015). Intracranial electroencephalography power and phase synchronization changes during monaural and binaural beat stimulation. European Journal of Neuroscience, 41(2), 254–263. https://doi.org/10.1111/ejn.12760
doi: 10.1111/ejn.12760
pubmed: 25345689
Chaieb, L., Wilpert, E. C., Reber, T. P., & Fell, J. (2015). Auditory beat stimulation and its effects on cognition and mood states. Frontiers in Psychiatry, 6, 70. https://doi.org/10.3389/fpsyt.2015.00070
doi: 10.3389/fpsyt.2015.00070
pubmed: 26029120
pmcid: 4428073
Colzato, L. S., Barone, H., Sellaro, R., & Hommel, B. (2017). More attentional focusing through binaural beats: Evidence from the global–local task. Psychological Research Psychologische Forschung, 81(1), 271–277. https://doi.org/10.1007/s00426-015-0727-0
doi: 10.1007/s00426-015-0727-0
pubmed: 26612201
Dangol, P. (2019). Remove mental blockages & subconscious negativity [Song]. On Inner Guidance.
Draganova, R., Ross, B., Wollbrink, A., & Pantev, C. (2008). Cortical steady-state responses to central and peripheral auditory beats. Cerebral Cortex, 18(5), 1193–1200. https://doi.org/10.1093/cercor/bhm153
doi: 10.1093/cercor/bhm153
pubmed: 17827173
Dunnett, C. W. (1955). A multiple comparison procedure for comparing several treatments with a control. Journal of the American Statistical Association, 50(272), 1096–1121. https://doi.org/10.1080/01621459.1955.10501294
doi: 10.1080/01621459.1955.10501294
Engelbregt, H., Meijburg, N., Schulten, M., Pogarell, O., & Deijen, J. B. (2019). The effects of binaural and monoaural beat stimulation on cognitive functioning in subjects with different levels of emotionality. Advances in Cognitive Psychology, 15(3), 199. https://doi.org/10.5709/acp-0268-8
doi: 10.5709/acp-0268-8
pubmed: 32395188
pmcid: 7204407
Engelbregt, H., Barmentlo, M., Keeser, D., Pogarell, O., & Deijen, J. B. (2021). Effects of binaural and monaural beat stimulation on attention and EEG. Experimental Brain Research, 239(9), 2781–2791. https://doi.org/10.1007/s00221-021-06155-z
doi: 10.1007/s00221-021-06155-z
pubmed: 34245340
pmcid: 8448709
Fell, J., Fernández, G., Klaver, P., Elger, C. E., & Fries, P. (2003). Is synchronized neuronal gamma activity relevant for selective attention? Brain Research Reviews, 42(3), 265–272. https://doi.org/10.1016/S0165-0173(03)00178-4
doi: 10.1016/S0165-0173(03)00178-4
pubmed: 12791444
Fox, J., Weisberg, S., Adler, D., Bates, D., Baud-Bovy, G., Ellison, S., ... & Monette, G. (2012). Package ‘car’. Vienna: R Foundation for Statistical Computing, 16
Fries, P. (2015). Rhythms for cognition: Communication through coherence. Neuron, 88(1), 220–235. https://doi.org/10.1016/j.neuron.2015.09.034
doi: 10.1016/j.neuron.2015.09.034
pubmed: 26447583
pmcid: 4605134
Gámez, P. B., & Vasilyeva, M. (2015). Exploring interactions between semantic and syntactic processes: The role of animacy in syntactic priming. Journal of Experimental Child Psychology, 138, 15–30. https://doi.org/10.1016/j.jecp.2015.04.009
doi: 10.1016/j.jecp.2015.04.009
pubmed: 26024980
Garcia-Argibay, M., Santed, M. A., & Reales, J. M. (2019a). Efficacy of binaural auditory beats in cognition, anxiety, and pain perception: A meta-analysis. Psychological Research Psychologische Forschung, 83(2), 357–372. https://doi.org/10.1007/s00426-018-1066-8
doi: 10.1007/s00426-018-1066-8
pubmed: 30073406
Garcia-Argibay, M., Santed, M. A., & Reales, J. M. (2019b). Binaural auditory beats affect long-term memory. Psychological Research Psychologische Forschung, 83(6), 1124–1136. https://doi.org/10.1007/s00426-017-0959-2
doi: 10.1007/s00426-017-0959-2
pubmed: 29222722
Gennari, S. P., & MacDonald, M. C. (2008). Semantic indeterminacy in object relative clauses. Journal of Memory and Language, 58(2), 161–187. https://doi.org/10.1016/j.jml.2007.07.004
doi: 10.1016/j.jml.2007.07.004
pubmed: 19724662
pmcid: 2735264
Gunter, T. C., Friederici, A. D., & Schriefers, H. (2000). Syntactic gender and semantic expectancy: ERPs reveal early autonomy and late interaction. Journal of Cognitive Neuroscience, 12(4), 556–568. https://doi.org/10.1162/089892900562336
doi: 10.1162/089892900562336
pubmed: 10936910
Hald, L. A., Bastiaansen, M. C., & Hagoort, P. (2006). EEG theta and gamma responses to semantic violations in online sentence processing. Brain and Language, 96(1), 90–105. https://doi.org/10.1016/j.bandl.2005.06.007
doi: 10.1016/j.bandl.2005.06.007
pubmed: 16083953
Heard, M., & Lee, Y. S. (2020). Shared neural resources of rhythm and syntax: An ALE meta-analysis. Neuropsychologia, 137, 107284.
doi: 10.1016/j.neuropsychologia.2019.107284
pubmed: 31783081
Hommel, B., Sellaro, R., Fischer, R., Borg, S., & Colzato, L. S. (2016). High-frequency binaural beats increase cognitive flexibility: Evidence from dual-task crosstalk. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2016.01287
doi: 10.3389/fpsyg.2016.01287
pubmed: 27605922
pmcid: 4995205
Hothorn, T., Bretz, F., Westfall, P., Heiberger, R. M., Schuetzenmeister, A., Scheibe, S., & Hothorn, M. T. (2016). Package ‘multcomp.’ Simultaneous Inference in General Parametric Models., 66, 5565.
Hsieh, L.-T., & Ranganath, C. (2014). Frontal midline theta oscillations during working memory maintenance and episodic encoding and retrieval. NeuroImage, 85, 721–729. https://doi.org/10.1016/j.neuroimage.2013.08.003
doi: 10.1016/j.neuroimage.2013.08.003
pubmed: 23933041
Isik, B. K., Esen, A., Büyükerkmen, B., Kilinç, A., & Menziletoglu, D. (2017). Effectiveness of binaural beats in reducing preoperative dental anxiety. British Journal of Oral and Maxillofacial Surgery, 55(6), 571–574. https://doi.org/10.1016/j.bjoms.2017.02.014
doi: 10.1016/j.bjoms.2017.02.014
pubmed: 28325532
Jensen, O., & Tesche, C. D. (2002). Frontal theta activity in humans increases with memory load in a working memory task: Frontal theta increases with memory load. European Journal of Neuroscience, 15(8), 1395–1399. https://doi.org/10.1046/j.1460-9568.2002.01975.x
doi: 10.1046/j.1460-9568.2002.01975.x
pubmed: 11994134
Jirakittayakorn, N., & Wongsawat, Y. (2017). Brain responses to a 6-Hz binaural beat: Effects on general theta rhythm and frontal midline theta activity. Frontiers in Neuroscience, 11, 365. https://doi.org/10.3389/fnins.2017.00365
doi: 10.3389/fnins.2017.00365
pubmed: 28701912
pmcid: 5487409
Just, M. A., & Carpenter, P. A. (1992). A capacity theory of comprehension: Individual differences in working memory. Psychological Review, 99(1), 122–149. https://doi.org/10.1037/0033-295X.99.1.122
doi: 10.1037/0033-295X.99.1.122
pubmed: 1546114
Justus, T. (2004). The cerebellum and English grammatical morphology: Evidence from production, comprehension, and grammaticality judgments. Journal of Cognitive Neuroscience, 16(7), 1115–1130. https://doi.org/10.1162/0898929041920513
doi: 10.1162/0898929041920513
pubmed: 15453968
pmcid: 2811412
Kasten, F. H., Dowsett, J., & Herrmann, C. S. (2016). Sustained aftereffect of α-tACS lasts up to 70 min after stimulation. Frontiers in Human Neuroscience, 10, 245. https://doi.org/10.3389/fnhum.2016.00245
doi: 10.3389/fnhum.2016.00245
pubmed: 27252642
pmcid: 4879138
Kielar, A., Panamsky, L., Links, K. A., & Meltzer, J. A. (2015). Localization of electrophysiological responses to semantic and syntactic anomalies in language comprehension with MEG. NeuroImage, 105, 507–524. https://doi.org/10.1016/j.neuroimage.2014.11.016
doi: 10.1016/j.neuroimage.2014.11.016
pubmed: 25463470
King, J., & Just, M. A. (1991). Individual differences in syntactic processing: The role of working memory. Journal of Memory and Language, 30(5), 580–602. https://doi.org/10.1016/0749-596X(91)90027-H
doi: 10.1016/0749-596X(91)90027-H
Krause, C. M., Sillanmäki, L., Koivisto, M., Saarela, C., Häggqvist, A., Laine, M., & Hämäläinen, H. (2000). The effects of memory load on event-related EEG desynchronization and synchronization. Clinical Neurophysiology, 111(11), 2071–2078. https://doi.org/10.1016/S1388-2457(00)00429-6
doi: 10.1016/S1388-2457(00)00429-6
pubmed: 11068244
Lakatos, P., Karmos, G., Mehta, A. D., Ulbert, I., & Schroeder, C. E. (2008). Entrainment of neuronal oscillations as a mechanism of attentional selection. Science, 320(5872), 110–113. https://doi.org/10.1126/science.1154735
doi: 10.1126/science.1154735
pubmed: 18388295
Lakatos, P., Gross, J., & Thut, G. (2019). A new unifying account of the roles of neuronal entrainment. Current Biology, 29(18), R890–R905. https://doi.org/10.1016/j.cub.2019.07.075
doi: 10.1016/j.cub.2019.07.075
pubmed: 31550478
Lane, J. D., Kasian, S. J., Owens, J. E., & Marsh, G. R. (1998). Binaural auditory beats affect vigilance performance and mood. Physiology & Behavior, 63(2), 249–252. https://doi.org/10.1016/S0031-9384(97)00436-8
doi: 10.1016/S0031-9384(97)00436-8
Lee, Y. S., Ahn, S., Holt, R. F., & Schellenberg, E. G. (2020). Rhythm and syntax processing in school-age children. Developmental Psychology. https://doi.org/10.1037/dev0000969
doi: 10.1037/dev0000969
pubmed: 33001668
pmcid: 8286870
Lewis, A. G., Wang, L., & Bastiaansen, M. (2015). Fast oscillatory dynamics during language comprehension: Unification versus maintenance and prediction? Brain and Language, 148, 51–63. https://doi.org/10.1016/j.bandl.2015.01.003
doi: 10.1016/j.bandl.2015.01.003
pubmed: 25666170
Lewis, A. G., Lemhӧfer, K., Schoffelen, J.-M., & Schriefers, H. (2016). Gender agreement violations modulate beta oscillatory dynamics during sentence comprehension: A comparison of second language learners and native speakers. Neuropsychologia, 89, 254–272. https://doi.org/10.1016/j.neuropsychologia.2016.06.031
doi: 10.1016/j.neuropsychologia.2016.06.031
pubmed: 27350390
Linebarger, M. C., Schwartz, M. F., & Saffran, E. M. (1983). Sensitivity to grammatical structure in so-called agrammatic aphasics. Cognition, 13(3), 361–392. https://doi.org/10.1016/0010-0277(83)90015-X
doi: 10.1016/0010-0277(83)90015-X
pubmed: 6683142
MacDonald, M. C., & Christiansen, M. H. (2002). Reassessing working memory: Comment on Just and Carpenter (1992) and Waters and Caplan (1996). Psychological Review, 109(1), 35–54. https://doi.org/10.1037/0033-295X.109.1.35
doi: 10.1037/0033-295X.109.1.35
pubmed: 11863041
Macmillan, N. A., & Kaplan, H. L. (1985). Detection theory analysis of group data: Estimating sensitivity from average hit and false-alarm rates. Psychological Bulletin, 98(1), 185–199. https://doi.org/10.1037/0033-2909.98.1.185
doi: 10.1037/0033-2909.98.1.185
pubmed: 4034817
Mallik, A., & Russo, F. A. (2022). The effects of music & auditory beat stimulation on anxiety: A randomized clinical trial. PLoS ONE, 17(3), 0259312.
doi: 10.1371/journal.pone.0259312
McDonald, J. L. (2000). Grammaticality judgments in a second language: Influences of age of acquisition and native language. Applied Psycholinguistics, 21(3), 395–423. https://doi.org/10.1017/S0142716400003064
doi: 10.1017/S0142716400003064
Meyer, L., Obleser, J., & Friederici, A. D. (2013). Left parietal alpha enhancement during working memory-intensive sentence processing. Cortex, 49(3), 711–721. https://doi.org/10.1016/j.cortex.2012.03.006
doi: 10.1016/j.cortex.2012.03.006
pubmed: 22513340
Neuling, T., Rach, S., & Herrmann, C. S. (2013). Orchestrating neuronal networks: Sustained after-effects of transcranial alternating current stimulation depend upon brain states. Frontiers in Human Neuroscience, 7, 161. https://doi.org/10.3389/fnhum.2013.00161
doi: 10.3389/fnhum.2013.00161
pubmed: 23641206
pmcid: 3639376
Noonan, N. B., Redmond, S. M., & Archibald, L. M. D. (2014). Contributions of children’s linguistic and working memory proficiencies to their judgments of grammaticality. Journal of Speech, Language, and Hearing Research, 57(3), 979–989. https://doi.org/10.1044/2014_JSLHR-L-12-0225
doi: 10.1044/2014_JSLHR-L-12-0225
pubmed: 24686570
Ortiz, T., Martínez, A. M., Fernández, A., Maestu, F., Campo, P., Hornero, R., Escudero, J., & Poch, J. (2008). Impact of auditory stimulation at a frequency of 5 Hz in verbal memory. Actas Espanolas De Psiquiatria, 36(6), 307–313.
pubmed: 18985458
Oster, G. (1973). Auditory beats in the brain. Scientific American, 229(4), 94–102. https://doi.org/10.1038/scientificamerican1073-94
doi: 10.1038/scientificamerican1073-94
pubmed: 4727697
Penolazzi, B., Angrilli, A., & Job, R. (2009). Gamma EEG activity induced by semantic violation during sentence reading. Neuroscience Letters, 465(1), 74–78. https://doi.org/10.1016/j.neulet.2009.08.065
doi: 10.1016/j.neulet.2009.08.065
pubmed: 19723559
Pérez, A., Molinaro, N., Mancini, S., Barraza, P., & Carreiras, M. (2012). Oscillatory dynamics related to the unagreement pattern in Spanish. Neuropsychologia, 50(11), 2584–2597. https://doi.org/10.1016/j.neuropsychologia.2012.07.009
doi: 10.1016/j.neuropsychologia.2012.07.009
pubmed: 22824235
Perez, H. D. O., Dumas, G., & Lehmann, A. (2020). Binaural beats through the auditory pathway: From brainstem to connectivity patterns. Eneuro, 7(2), 0232–0319.
Pratt, H., Starr, A., Michalewski, H. J., Dimitrijevic, A., Bleich, N., & Mittelman, N. (2010). A comparison of auditory evoked potentials to acoustic beats and to binaural beats. Hearing Research, 262(1–2), 34–44. https://doi.org/10.1016/j.heares.2010.01.013
doi: 10.1016/j.heares.2010.01.013
pubmed: 20123120
Prystauka, Y., & Lewis, A. G. (2019). The power of neural oscillations to inform sentence comprehension: A linguistic perspective. Language and Linguistics Compass. https://doi.org/10.1111/lnc3.12347
doi: 10.1111/lnc3.12347
pubmed: 33042211
pmcid: 7546279
Reedijk, S. A., Bolders, A., Colzato, L. S., & Hommel, B. (2015). Eliminating the attentional blink through binaural beats: A case for tailored cognitive enhancement. Frontiers in Psychiatry. https://doi.org/10.3389/fpsyt.2015.00082
doi: 10.3389/fpsyt.2015.00082
pubmed: 26089802
pmcid: 4455234
Reinhart, R. M., & Nguyen, J. A. (2019). Working memory revived in older adults by synchronizing rhythmic brain circuits. Nature Neuroscience, 22(5), 820–827. https://doi.org/10.1038/s41593-019-0371-x
doi: 10.1038/s41593-019-0371-x
pubmed: 30962628
pmcid: 6486414
Rommers, J., Dijkstra, T., & Bastiaansen, M. (2013). Context-dependent semantic processing in the human brain: Evidence from idiom comprehension. Journal of Cognitive Neuroscience, 25(5), 762–776. https://doi.org/10.1162/jocn_a_00337
doi: 10.1162/jocn_a_00337
pubmed: 23249356
Ross, B., & Lopez, M. D. (2020). 40-Hz Binaural beats enhance training to mitigate the attentional blink. Scientific Reports, 10(1), 7002. https://doi.org/10.1038/s41598-020-63980-y
doi: 10.1038/s41598-020-63980-y
pubmed: 32332827
pmcid: 7181825
Scheeringa, R., Petersson, K. M., Oostenveld, R., Norris, D. G., Hagoort, P., & Bastiaansen, M. (2009). Trial-by-trial coupling between EEG and BOLD identifies networks related to alpha and theta EEG power increases during working memory maintenance. NeuroImage, 44(3), 1224–1238. https://doi.org/10.1016/j.neuroimage.2008.08.041
doi: 10.1016/j.neuroimage.2008.08.041
pubmed: 18840533
Schroeder, C. E., & Lakatos, P. (2009). Low-frequency neuronal oscillations as instruments of sensory selection. Trends in Neurosciences, 32(1), 9–18. https://doi.org/10.1016/j.tins.2008.09.012
doi: 10.1016/j.tins.2008.09.012
pubmed: 19012975
Wang, L., Zhu, Z., & Bastiaansen, M. (2012). Integration or predictability? A further specification of the functional role of gamma oscillations in language comprehension. Frontiers in Psychology., 11, 435. https://doi.org/10.3389/fpsyg.2012.00187
doi: 10.3389/fpsyg.2012.00187
Weiss, S., & Mueller, H. M. (2012). “Too many betas do not spoil the broth”: The role of beta brain oscillations in language processing. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2012.00201
doi: 10.3389/fpsyg.2012.00201
pubmed: 22737138
pmcid: 3382410
Weiss, S., Mueller, H., Schack, B., King, J., Kutas, M., & Rappelsberger, P. (2005). Increased neuronal communication accompanying sentence comprehension. International Journal of Psychophysiology, 57(2), 129–141. https://doi.org/10.1016/j.ijpsycho.2005.03.013
doi: 10.1016/j.ijpsycho.2005.03.013
pubmed: 15935501
Wells, J. B., Christiansen, M. H., Race, D. S., Acheson, D. J., & MacDonald, M. C. (2009). Experience and sentence processing: Statistical learning and relative clause comprehension. Cognitive Psychology, 58(2), 250–271. https://doi.org/10.1016/j.cogpsych.2008.08.002
doi: 10.1016/j.cogpsych.2008.08.002
pubmed: 18922516
Wernick, J. S., & Starr, A. (1968). Binaural interaction in the superior olivary complex of the cat: An analysis of field potentials evoked by binaural-beat stimuli. Journal of Neurophysiology, 31(3), 428–441. https://doi.org/10.1152/jn.1968.31.3.428
doi: 10.1152/jn.1968.31.3.428
pubmed: 5687763
Wischnewski, M., Engelhardt, M., Salehinejad, M. A., Schutter, D. J. L. G., Kuo, M. F., & Nitsche, M. A. (2019). NMDA receptor-mediated motor cortex plasticity after 20 Hz transcranial alternating current stimulation. Cerebral Cortex, 29(7), 2924–2931. https://doi.org/10.1093/cercor/bhy160
doi: 10.1093/cercor/bhy160
pubmed: 29992259
Wiwatwongwana, D., Vichitvejpaisal, P., Thaikruea, L., Klaphajone, J., Tantong, A., & Wiwatwongwana, A. (2016). The effect of music with and without binaural beat audio on operative anxiety in patients undergoing cataract surgery: A randomized controlled trial. Eye, 30(11), 1407–1414. https://doi.org/10.1038/eye.2016.160
doi: 10.1038/eye.2016.160
pubmed: 27740618
pmcid: 5108018
Wulfeck, B. B. (1988). Grammaticality judgments and sentence comprehension in agrammatic aphasia. Journal of Speech, Language, and Hearing Research, 31(1), 72–81. https://doi.org/10.1044/jshr.3101.72
doi: 10.1044/jshr.3101.72