Oceanic climate changes threaten the sustainability of Asia's water tower.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
03 2023
03 2023
Historique:
received:
02
07
2022
accepted:
09
12
2022
entrez:
1
3
2023
pubmed:
2
3
2023
medline:
4
3
2023
Statut:
ppublish
Résumé
Water resources sustainability in High Mountain Asia (HMA) surrounding the Tibetan Plateau (TP)-known as Asia's water tower-has triggered widespread concerns because HMA protects millions of people against water stress
Identifiants
pubmed: 36859582
doi: 10.1038/s41586-022-05643-8
pii: 10.1038/s41586-022-05643-8
pmc: PMC9977686
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
87-93Subventions
Organisme : National Science Foundation
ID : 1752729
Informations de copyright
© 2023. The Author(s).
Références
Pritchard, H. D. Asia’s shrinking glaciers protect large populations from drought stress. Nature 569, 649–654 (2019).
pubmed: 31142854
doi: 10.1038/s41586-019-1240-1
Immerzeel, W. W. et al. Importance and vulnerability of the world’s water towers. Nature 577, 364–369 (2020).
pubmed: 31816624
doi: 10.1038/s41586-019-1822-y
Kraaijenbrink, P. D. A., Bierkens, M. F. P., Lutz, A. F. & Immerzeel, W. W. Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers. Nature 549, 257–260 (2017).
pubmed: 28905897
doi: 10.1038/nature23878
Wang, J. et al. Recent global decline in endorheic basin water storages. Nat. Geosci. 11, 926–932 (2018).
pubmed: 30510596
pmcid: 6267997
doi: 10.1038/s41561-018-0265-7
Rodell, M. et al. Emerging trends in global freshwater availability. Nature 557, 651–659 (2018).
pubmed: 29769728
pmcid: 6077847
doi: 10.1038/s41586-018-0123-1
Pokhrel, Y. et al. Global terrestrial water storage and drought severity under climate change. Nat. Clim. Change 11, 226–233 (2021).
doi: 10.1038/s41558-020-00972-w
Shen, Z. et al. Drying in the low-latitude Atlantic Ocean contributed to terrestrial water storage depletion across Eurasia. Nat. Commun. 13, 1849 (2022).
pubmed: 35387999
pmcid: 8986788
doi: 10.1038/s41467-022-29544-6
Immerzeel, W. W., van Beek, L. P. H. & Bierkens, M. F. P. Climate change will affect the Asian water towers. Science 328, 1382–1385 (2010).
pubmed: 20538947
doi: 10.1126/science.1183188
Laghari, A. N., Vanham, D. & Rauch, W. The Indus basin in the framework of current and future water resources management. Hydrol. Earth Syst. Sci. 16, 1063–1083 (2012).
doi: 10.5194/hess-16-1063-2012
Schmidhuber, J. & Tubiello, F. N. Global food security under climate change. Proc. Natl Acad. Sci. USA 104, 19703–19708 (2007).
pubmed: 18077404
pmcid: 2148361
doi: 10.1073/pnas.0701976104
Godfray, H. C. J. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).
pubmed: 20110467
doi: 10.1126/science.1185383
Kummu, M., Gerten, D., Heinke, J., Konzmann, M. & Varis, O. Climate-driven interannual variability of water scarcity in food production potential: a global analysis. Hydrol. Earth Syst. Sci. 18, 447–461 (2014).
doi: 10.5194/hess-18-447-2014
Biemans, H. et al. Importance of snow and glacier meltwater for agriculture on the Indo-Gangetic Plain. Nat Sustain 2, 594–601 (2019).
doi: 10.1038/s41893-019-0305-3
IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Barros, V. R. et al.) (Cambridge Univ. Press, 2014).
Lutz, A. F., Immerzeel, W. W., Shrestha, A. B. & Bierkens, M. F. P. Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat. Clim. Change 4, 587–592 (2014).
doi: 10.1038/nclimate2237
Bliss, A., Hock, R. & Radic, V. Global response of glacier runoff to twenty-first century climate change. J. Geophys. Res. Earth Surf. 119, 717–730 (2014).
doi: 10.1002/2013JF002931
Kääb, A. et al. Massive collapse of two glaciers in western Tibet in 2016 after surge-like instability. Nature Geosci 11, 114–120 (2018).
doi: 10.1038/s41561-017-0039-7
Huss, M. & Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Change 8, 135–140 (2018).
doi: 10.1038/s41558-017-0049-x
Hugonnet, R. et al. Accelerated global glacier mass loss in the early twenty-first century. Nature 592, 726–731 (2021).
pubmed: 33911269
doi: 10.1038/s41586-021-03436-z
Li, X. et al. Climate change threatens terrestrial water storage over the Tibetan Plateau. Nat. Clim. Change 12, 801–807 (2022).
doi: 10.1038/s41558-022-01443-0
Gimeno, L. et al. Major mechanisms of atmospheric moisture transport and their role in extreme precipitation events. Annu. Rev. Environ. Resour. 41, 117–141 (2016).
doi: 10.1146/annurev-environ-110615-085558
Gimeno, L. et al. Recent progress on the sources of continental precipitation as revealed by moisture transport analysis. Earth Sci. Rev. 201, 103070 (2020).
doi: 10.1016/j.earscirev.2019.103070
Shields, C. A. et al. Atmospheric River Tracking Method Intercomparison Project (ARTMIP): project goals and experimental design. Geosci. Model Dev. 11, 2455–2474 (2018).
doi: 10.5194/gmd-11-2455-2018
Thompson, L. G. et al. Abrupt tropical climate change: past and present. Proc. Natl Acad. Sci. USA 103, 10536–10543 (2006).
pubmed: 16815970
pmcid: 1484420
doi: 10.1073/pnas.0603900103
Zhao, H. et al. Deuterium excess record in a southern Tibetan ice core and its potential climatic implications. Clim. Dyn. 38, 1791–1803 (2012).
doi: 10.1007/s00382-011-1161-7
Yao, T. et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Change 2, 663–667 (2012).
doi: 10.1038/nclimate1580
Herrera-Estrada, J. E. et al. Reduced moisture transport linked to drought propagation across North America. Geophys. Res. Lett. 46, 5243–5253 (2019).
doi: 10.1029/2019GL082475
Herrera-Estrada, J. E. & Diffenbaugh, N. S. Landfalling droughts: global tracking of moisture deficits from the oceans onto land. Water Resour. Res. 56, e2019WR026877 (2020).
doi: 10.1029/2019WR026877
Mölg, T., Maussion, F. & Scherer, D. Mid-latitude westerlies as a driver of glacier variability in monsoonal High Asia. Nat. Clim. Change 4, 68–73 (2014).
doi: 10.1038/nclimate2055
Jacob, T. et al. Recent contributions of glaciers and ice caps to sea level rise. Nature 482, 514–518 (2012).
pubmed: 22318519
doi: 10.1038/nature10847
Zhang, G., Xie, H., Kang, S., Yi, D. & Ackley, S. F. Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003–2009). Remote Sens. Environ. 115, 1733–1742 (2011).
doi: 10.1016/j.rse.2011.03.005
Mott, R., Daniels, M. & Lehning, M. Atmospheric flow development and associated changes in turbulent sensible heat flux over a patchy mountain snow cover. J. Hydrometeorol. 16, 1315–1340 (2015).
doi: 10.1175/JHM-D-14-0036.1
Sauter, T. & Galos, S. P. Effects of local advection on the spatial sensible heat flux variation on a mountain glacier. Cryosphere 10, 2887–2905 (2016).
doi: 10.5194/tc-10-2887-2016
GeoMapApp. World Adm0 map. GeoMapApp http://www.geomapapp.org/GMA/Layers/Shapefiles/Country_Boundaries (2022).
Zhang, G. Dataset of river basins map over the TP. National Tibetan Plateau Data Center https://doi.org/10.11888/BaseGeography.tpe.249465.file (2019)
Wickham, H. ggplot2: Elegant Graphics for Data Analysis 2nd edn (Springer, 2016).
Zhang, Q. et al. Sharing codes and data for the article entitled “Oceanic climate changes threaten the sustainability of Asia’s water tower”. Zenodo https://doi.org/10.5281/zenodo.6790243 (2022).
Kahle, D., & Wickham, H. ggmap: spatial visualization with ggplot2. The R Journal Vol. 5, Issue 1, pp. 144–161. https://journal.r-project.org/archive/2013-1/kahle-wickham.pdf (2013).
Pisso, I. et al. The Lagrangian particle dispersion model FLEXPART version 10.4. Geosci. Model Dev. 12, 4955–4997 (2019).
doi: 10.5194/gmd-12-4955-2019
Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).
doi: 10.1002/qj.828
Hersbach, H. et al. ERA5 monthly averaged data on single levels from 1959 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS) https://doi.org/10.24381/cds.f17050d7 (2019).
Schneider, U., Becker, A., Finger, P., Rustemeier, E. & Ziese, M. GPCC full data monthly product version 2020 (at 0.25° at 0.5°, 1.0°, 2.5°): monthly land-surface precipitation from rain-gauges built on GTS-based and historical data. Global Precipitation Climatology Centre https://doi.org/10.5676/DWD_GPCC/FD_M_V2020_025 (2020).
Tapley, B. D., Bettadpur, S., Watkins, M. & Reigber, C. The gravity recovery and climate experiment: mission overview and early results. Geophys. Res. Lett. 31, L09607 (2004).
doi: 10.1029/2004GL019920
Tapley, B. D. et al. Contributions of GRACE to understanding climate change. Nat. Clim. Change 9, 358–369 (2019).
doi: 10.1038/s41558-019-0456-2
Shen, Z. et al. Mining can exacerbate global degradation of dryland. Geophys. Res. Lett. 48, e2021GL094490 (2021).
doi: 10.1029/2021GL094490
Bonjean, F. & Lagerloef, G. S. E. Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean. J. Phys. Oceanogr. 32, 2938–2954 (2002).
doi: 10.1175/1520-0485(2002)032<2938:DMAAOT>2.0.CO;2
Hall, D. K. & Riggs, G. A. MODIS/Terra snow cover monthly L3 global 0.05Deg CMG, version 61 (MOD10CM). NASA National Snow and Ice Data Center Distributed Active Archive Center https://doi.org/10.5067/MODIS/MOD10CM.061 (2021).
Ordoñez, P. et al. Climatological moisture sources for the Western North American Monsoon through a Lagrangian approach: their influence on precipitation intensity. Earth Syst. Dyn. 10, 59–72 (2019).
doi: 10.5194/esd-10-59-2019
Numaguti, A. Origin and recycling processes of precipitating water over the Eurasian continent: experiments using an atmospheric general circulation model. J. Geophys. Res. 104, 1957–1972 (1999).
doi: 10.1029/1998JD200026
Gimeno, L. et al. Oceanic and terrestrial sources of continental precipitation. Rev. Geophys. 50, RG4003 (2012).
doi: 10.1029/2012RG000389
Hartigan, J. A. & Wong, M. A. Algorithm AS 136: a k-means clustering algorithm. J. R. Stat. Soc. Ser. C Appl. Stat. 28, 100–108 (1979).
Sun, B. & Wang, H. Moisture sources of semiarid grassland in China using the Lagrangian particle model FLEXPART. J. Clim. 27, 2457–2474 (2014).
doi: 10.1175/JCLI-D-13-00517.1
Stohl, A. & James, P. A Lagrangian analysis of the atmospheric branch of the global water cycle. Part I: method description, validation, and demonstration for the August 2002 flooding in central Europe. J. Hydrometeorol. 5, 656–678 (2004).
doi: 10.1175/1525-7541(2004)005<0656:ALAOTA>2.0.CO;2
Oppenheim, A. V. & Schafer, R. W. Discrete-Time Signal Processing (Prentice Hall, 2009).
Wake, B. Earth’s energy balance. Nat. Clim. Change. 4, 758 (2014).
doi: 10.1038/nclimate2364
Shiogama, H. et al. Emergent constraints on future precipitation changes. Nature 602, 612–616 (2022).
pubmed: 35197617
doi: 10.1038/s41586-021-04310-8