Asymmetric Synthesis of Vicinal Tetrasubstituted Diamines via Reductive Coupling of Ketimines Templated by Chiral Diborons.
Asymmetric Homocoupling
Asymmetric α-Bromination
Chiral Diborons
Chiral Tetrasubstituted Diamines
Halogen Bonding
Journal
Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543
Informations de publication
Date de publication:
17 Apr 2023
17 Apr 2023
Historique:
received:
09
01
2023
medline:
2
3
2023
pubmed:
2
3
2023
entrez:
1
3
2023
Statut:
ppublish
Résumé
We herein describe the chiral diboron-templated asymmetric homocoupling of aryl alkyl ketimines, providing for the first time a series of chiral vicinal tetrasubstituted diamines with excellent ee values and good to high yields. The powerful and efficient diboron-participated [3,3]-sigmatropic rearrangement is successfully demonstrated by the homocoupling of a variety of ketimines thanks to the rational design and engineering of chiral diborons. Systematic DFT studies suggest that two chiral diborons adopt different conformational assembling strategies to couple the diboron template with ketimine substrates in their tight concerted transition states to ensure the excellent enantioselectivities. The synthetic value of chiral vicinal tetrasubstituted diamines is demonstrated by the asymmetric α-bromination of aliphatic aldehydes by employing a chiral vicinal tetrasubstituted diamine-based organocatalyst.
Identifiants
pubmed: 36859620
doi: 10.1002/anie.202300334
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e202300334Subventions
Organisme : National Key R&D Program of China
ID : 2022YFA1503702
Organisme : National Key R&D Program of China
ID : 2021YFF0701601
Organisme : National Natural Science Foundation of China
ID : 82188101
Organisme : National Natural Science Foundation of China
ID : 21725205
Organisme : National Natural Science Foundation of China
ID : 21432007
Organisme : National Natural Science Foundation of China
ID : 22071261
Organisme : National Natural Science Foundation of China
ID : 21572246
Organisme : National Natural Science Foundation of China
ID : 21702223
Organisme : National Natural Science Foundation of China
ID : 21933003
Organisme : National Natural Science Foundation of China
ID : 22193020
Organisme : National Natural Science Foundation of China
ID : 22193023
Organisme : Shenzhen Nobel Prize Scientists Laboratory Project
ID : C17783101
Organisme : Guangdong Provincial Key Laboratory of Catalytic Chemistry
ID : 2020B121201002
Organisme : Youth Innovation Promotion Association
Informations de copyright
© 2023 Wiley-VCH GmbH.
Références
For selected examples of chiral vicinal tetrasubstituted diamines found in active pharmaceutical ingredients, see:
V. V. Bakhonsky, A. A. Pashenko, J. Becker, H. Hausmann, H. J. M. D. Groot, H. S. Overkleeft, A. A. Fokin, P. R. Schreiner, Dalton Trans. 2020, 49, 14009-14016;
B. Vu, P. Wovkulich, G. Pizzolato, A. Lovey, Q. Ding, N. Jiang, J.-J. Liu, C. Zhao, K. Glenn, Y. Wen, C. Tovar, K. Packman, L. Vassilev, B. Graves, ACS Med. Chem. Lett. 2013, 4, 466-469;
L. Shu, C. Gu, Y. Dong, R. Brinkman, Org. Process Res. Dev. 2012, 16, 1940-1946.
For selected examples of chiral vicinal tetrasubstituted diamines found in magnetic materials, see:
C. Hirel, J. Pécaut, S. Choua, P. Turek, D. B. Amabilino, J. Veciana, P. Rey, Eur. J. Org. Chem. 2005, 348-359;
M. Minguet, D. B. Amabilino, J. Cirujeda, K. Wurst, I. Mata, E. Molins, J. J. Novoa, J. Veciana, Chem. Eur. J. 2000, 6, 2350-2361;
J. Zhang, M. Zhao, G. Cui, S. Peng, Bioorg. Med. Chem. 2008, 16, 4019-4028.
For selected examples of chiral vicinal diamines used in organometallic catalysts, see:
S. Hashiguchi, A. Fujii, J. Takehara, T. Ikariya, R. Noyori, J. Am. Chem. Soc. 1995, 117, 7562-7563;
H. Vázquez-Villa, S. Reber, M. A. Ariger, E. M. Carreira, Angew. Chem. Int. Ed. 2011, 50, 8979-8981;
Angew. Chem. 2011, 123, 9141-9143;
T. Touge, H. Nara, M. Fujiwhara, Y. Kayaki, T. Ikariya, J. Am. Chem. Soc. 2016, 138, 10084-10087;
J. P. C. Coverdale, I. R. Canelón, C. S. Cano, G. J. Clarkson, A. Habtemariam, M. Wills, P. J. Sadler, Nat. Chem. 2018, 10, 347-354;
F. Wang, T. Yang, T. Wu, L.-S. Zheng, C. Yin, Y. Shi, X.-Y. Ye, G.-Q. Chen, X. Zhang, J. Am. Chem. Soc. 2021, 143, 2477-2483;
H. Nakamura, M. Yoshida, A. Matsunami, S. Kuwata, Y. Kayaki, Chem. Commun. 2021, 57, 5534-5537;
V. K. Vyas, G. J. Clarkson, M. Wills, Angew. Chem. Int. Ed. 2020, 59, 14265-14269;
Angew. Chem. 2020, 132, 14371-14375;
S.-X. Zhang, C. Xu, N. Yi, S. Li, Y.-M. He, Y. Feng, Q.-H. Fan, Angew. Chem. Int. Ed. 2022, 61, e202205739;
Angew. Chem. 2022, 134, e202205739.
K. P. Bryliakov, E. P. Talsi, Angew. Chem. Int. Ed. 2004, 43, 5228-5230;
Angew. Chem. 2004, 116, 5340-5342;
E. P. Talsi, K. P. Bryliakov, Chem. Eur. J. 2007, 13, 8045-8050.
H. Shimizu, S. Onitsuka, H. Egami, T. Katsuki, J. Am. Chem. Soc. 2005, 127, 5396-5413.
S. G. Pyne, P. J. Chevis, Org. Chem. Front. 2021, 8, 2287-2314.
Z. Zhang, K. Tanaka, J.-Q. Yu, Nature 2017, 543, 538-542.
E. P. Vanable, J. L. Kennemur, L. A. Joyce, R. T. Ruck, D. M. Schultz, K. L. Hull, J. Am. Chem. Soc. 2019, 141, 739-742;
S. Ichikawa, X.-J. Dai, S. L. Buchwald, Org. Lett. 2019, 21, 4370-4373.
J. Chen, X. Gong, J. Li, Y. Li, J. Ma, C. Hou, G. Zhao, W. Yuan, B. Zhao, Science 2018, 360, 1438-1442.
P. Zhou, X. Shao, S. J. Malcolmson, J. Am. Chem. Soc. 2021, 143, 13999-14008;
T. Agrawal, R. T. Martin, S. Collins, Z. Wilhelm, M. D. Edwards, O. Gutierrez, J. D. Sieber, J. Org. Chem. 2021, 86, 5026-5046.
Y. Chen, Y. Pan, Y.-M. He, Q.-H. Fan, Angew. Chem. Int. Ed. 2019, 58, 16831-16834;
Angew. Chem. 2019, 131, 16987-16990.
H.-J. Pan, Y. Lin, T. Gao, K. Lau, W. Feng, B. Yang, Y. Zhao, Angew. Chem. Int. Ed. 2021, 60, 18599-18604;
Angew. Chem. 2021, 133, 18747-18752.
H. Kim, Y. Nguyen, C. P.-H. Yen, L. Chagal, A. J. Lough, B. M. Kim, J. Chin, J. Am. Chem. Soc. 2008, 130, 12184-12191.
L. Yu, P. Somfai, Angew. Chem. Int. Ed. 2019, 58, 8551-8555;
Angew. Chem. 2019, 131, 8639-8643.
K. Lang, S. Torker, L. Wojtas, X. P. Zhang, J. Am. Chem. Soc. 2019, 141, 12388-12396.
Z. Tao, B. B. Gilbert, S. E. Denmark, J. Am. Chem. Soc. 2019, 141, 19161-19170;
Q. Li, X. Fang, R. Pan, H. Yao, A. Lin, J. Am. Chem. Soc. 2022, 144, 11364-11367;
H. Du, W. Yuan, B. Zhao, Y. Shi, J. Am. Chem. Soc. 2007, 129, 11688-11689;
M. Wu, T. Fan, S. Chen, Z. Han, L. Gong, Org. Lett. 2018, 20, 2485-2489.
Z. Chai, P.-J. Yang, H. Zhang, S. Wang, G. Yang, Angew. Chem. Int. Ed. 2017, 56, 650-654;
Angew. Chem. 2017, 129, 665-669.
N. Fu, G. S. Sauer, A. Saha, A. Loo, S. Lin, Science 2017, 357, 575-579;
T. R. Swaroop, Z.-Q. Wang, Q.-Y. Li, H. S. Wang, J. Electrochem. Soc. 2020, 167, 046504;
D. Lehnherr, Y.-H. Lam, M. C. Nicastri, J. Liu, J. A. Newman, L. E. Regalado, D. A. Dirocco, T. Rovis, J. Am. Chem. Soc. 2020, 142, 468-478.
J. Rong, H. P. Seeberger, K. Gilmore, Org. Lett. 2018, 20, 4081-4085;
W.-L. Lei, K.-W. Feng, T. Wang, L.-Z. Wu, Q. Liu, Org. Lett. 2018, 20, 7220-7224.
W.-R. Zhu, K. Liu, J. Wenig, W.-H. Huang, W.-J. Huang, Q. Chen, N. Lin, G. Lu, Org. Lett. 2020, 22, 5014-5019.
M. Zhou, K. Li, D. Chen, R. Xu, G. Xu, W. Tang, J. Am. Chem. Soc. 2020, 142, 10337-10342;
Q. Zhou, W. Tang, L. W. Chung, J. Organomet. Chem. 2018, 864, 97-104;
D. Chen, G. Xu, Q. Zhou, L. W. Chung, W. Tang, J. Am. Chem. Soc. 2017, 139, 9767-9770.
Deposition Numbers 2226866 (for 3a), 2226865 (for 3d), and 2226864 (for 5k) contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
See Supporting Information for the computational details;
Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215-241;
A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378-6396;
G. Luchini, J. V. Alegre-Requena, I. Funes-Ardoiz, R. S. Paton, F1000Research 2020, 9, 291-305.
Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al. Gaussian, Inc., Wallingford CT, 2009.
Selected DFT studies on reactions mediated by diborons:
Z. Ding, Z. Liu, Z. Wang, T. Yu, M. Xu, J. Wen, K. Yang, H. Zhang, L. Xu, P. Li, J. Am. Chem. Soc. 2022, 144, 8870-8882;
L. Gao, H. Zhang, X. Liu, G. Wang, S. Li, Dalton Trans. 2021, 50, 6982-6990;
J. Cao, G. Wang, L. Gao, X. Cheng, S. Li, Chem. Sci. 2018, 9, 3664-3671;
L. Zhang, L. Jiao, Chem. Sci. 2018, 9, 2711-2722.
Selected DFT studies on the mechanism of organic reactions:
X. Zhang, L. W. Chung, Y.-D. Wu, Acc. Chem. Res. 2016, 49, 1302-1310;
J. Lan, X. Li, Y. Yang, X. Zhang, L. W. Chung, Acc. Chem. Res. 2022, 55, 1109-1123;
Q. Peng, R. S. Paton, Acc. Chem. Res. 2016, 49, 1042-1051;
Y.-h. Lam, M. N. Grayson, M. C. Holland, A. Simon, K. N. Houk, Acc. Chem. Res. 2016, 49, 750-762;
R. B. Sunoj, Acc. Chem. Res. 2016, 49, 1019-1028;
J. N. Harvey, F. Himo, F. Maseras, L. Perrin, ACS Catal. 2019, 9, 6803-6813;
D. J. Tantillo, Acc. Chem. Res. 2016, 49, 741-749.
D. H. Ess, K. N. Houk, J. Am. Chem. Soc. 2007, 129, 10646-10647;
F. M. Bickelhaupt, K. N. Houk, Angew. Chem. Int. Ed. 2017, 56, 10070-10086;
Angew. Chem. 2017, 129, 10204-10221;
C. Chen, Z. Zhang, S. Jin, X. Fan, M. Geng, Y. Zhou, S. Wen, X. Wang, L. W. Chung, X. Q. Dong, X. Zhang, Angew. Chem. Int. Ed. 2017, 56, 6808-6812;
Angew. Chem. 2017, 129, 6912-6916.
J. Liu, M. Nie, Q. Zhou, L. W. Chung, W. Tang, K. Ding, Chem. Sci. 2017, 8, 5161-5165.