Maxillofacial fracture detection and classification in computed tomography images using convolutional neural network-based models.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
01 03 2023
01 03 2023
Historique:
received:
11
06
2022
accepted:
27
02
2023
entrez:
1
3
2023
pubmed:
2
3
2023
medline:
4
3
2023
Statut:
epublish
Résumé
The purpose of this study was to evaluate the performance of convolutional neural network-based models for the detection and classification of maxillofacial fractures in computed tomography (CT) maxillofacial bone window images. A total of 3407 CT images, 2407 of which contained maxillofacial fractures, were retrospectively obtained from the regional trauma center from 2016 to 2020. Multiclass image classification models were created by using DenseNet-169 and ResNet-152. Multiclass object detection models were created by using faster R-CNN and YOLOv5. DenseNet-169 and ResNet-152 were trained to classify maxillofacial fractures into frontal, midface, mandibular and no fracture classes. Faster R-CNN and YOLOv5 were trained to automate the placement of bounding boxes to specifically detect fracture lines in each fracture class. The performance of each model was evaluated on an independent test dataset. The overall accuracy of the best multiclass classification model, DenseNet-169, was 0.70. The mean average precision of the best multiclass detection model, faster R-CNN, was 0.78. In conclusion, DenseNet-169 and faster R-CNN have potential for the detection and classification of maxillofacial fractures in CT images.
Identifiants
pubmed: 36859660
doi: 10.1038/s41598-023-30640-w
pii: 10.1038/s41598-023-30640-w
pmc: PMC9978019
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
3434Informations de copyright
© 2023. The Author(s).
Références
IEEE Trans Pattern Anal Mach Intell. 2017 Jun;39(6):1137-1149
pubmed: 27295650
Plast Reconstr Surg. 2001 Aug;108(2):312-27
pubmed: 11496168
Plast Reconstr Surg. 2011 Jun;127(6):2432-2440
pubmed: 21617475
Eur J Radiol. 2008 Jun;66(3):396-418
pubmed: 18082349
Sensors (Basel). 2022 Jan 10;22(2):
pubmed: 35062465
Evol Intell. 2022;15(1):1-22
pubmed: 33425040
Int J Oral Maxillofac Surg. 2022 Nov;51(11):1488-1494
pubmed: 35397969
Clin Oral Investig. 2022 Jun;26(6):4593-4601
pubmed: 35218428
Br J Oral Maxillofac Surg. 1990 Oct;28(5):287-91
pubmed: 2248934
J Craniofac Surg. 2004 Jul;15(4):636-41; discussion 642
pubmed: 15213544
Radiology. 2020 Aug;296(2):E65-E71
pubmed: 32191588
J Craniofac Surg. 2004 Jul;15(4):686-91
pubmed: 15213554
J Craniomaxillofac Surg. 2004 Oct;32(5):308-13
pubmed: 15458673
Int J Oral Maxillofac Surg. 1995 Dec;24(6):409-12
pubmed: 8636636
IEEE J Biomed Health Inform. 2017 Jan;21(1):31-40
pubmed: 28114041
Sci Rep. 2017 Apr 19;7:46479
pubmed: 28422152
BMC Med Inform Decis Mak. 2021 Nov 22;21(1):324
pubmed: 34809632
JAMA Netw Open. 2021 May 3;4(5):e216096
pubmed: 33956133
J Plast Reconstr Aesthet Surg. 2014 Feb;67(2):183-9
pubmed: 24200703
Eur Radiol. 2019 Nov;29(11):6191-6201
pubmed: 31041565
Radiol Artif Intell. 2020 Mar 25;2(2):e190023
pubmed: 33937815