Ensemble deep learning models for protein secondary structure prediction using bidirectional temporal convolution and bidirectional long short-term memory.
bidirectional long short-term memory
bidirectional temporal convolutional network
fusing the features
multi-scale BTCN
protein secondary structure prediction
reverse prediction
Journal
Frontiers in bioengineering and biotechnology
ISSN: 2296-4185
Titre abrégé: Front Bioeng Biotechnol
Pays: Switzerland
ID NLM: 101632513
Informations de publication
Date de publication:
2023
2023
Historique:
received:
26
09
2022
accepted:
03
02
2023
entrez:
2
3
2023
pubmed:
3
3
2023
medline:
3
3
2023
Statut:
epublish
Résumé
Protein secondary structure prediction (PSSP) is a challenging task in computational biology. However, existing models with deep architectures are not sufficient and comprehensive for deep long-range feature extraction of long sequences. This paper proposes a novel deep learning model to improve Protein secondary structure prediction. In the model, our proposed bidirectional temporal convolutional network (BTCN) can extract the bidirectional deep local dependencies in protein sequences segmented by the sliding window technique, the bidirectional long short-term memory (BLSTM) network can extract the global interactions between residues, and our proposed multi-scale bidirectional temporal convolutional network (MSBTCN) can further capture the bidirectional multi-scale long-range features of residues while preserving the hidden layer information more comprehensively. In particular, we also propose that fusing the features of 3-state and 8-state Protein secondary structure prediction can further improve the prediction accuracy. Moreover, we also propose and compare multiple novel deep models by combining bidirectional long short-term memory with temporal convolutional network (TCN), reverse temporal convolutional network (RTCN), multi-scale temporal convolutional network (multi-scale bidirectional temporal convolutional network), bidirectional temporal convolutional network and multi-scale bidirectional temporal convolutional network, respectively. Furthermore, we demonstrate that the reverse prediction of secondary structure outperforms the forward prediction, suggesting that amino acids at later positions have a greater impact on secondary structure recognition. Experimental results on benchmark datasets including CASP10, CASP11, CASP12, CASP13, CASP14, and CB513 show that our methods achieve better prediction performance compared to five state-of-the-art methods.
Identifiants
pubmed: 36860882
doi: 10.3389/fbioe.2023.1051268
pii: 1051268
pmc: PMC9968878
doi:
Types de publication
Journal Article
Langues
eng
Pagination
1051268Informations de copyright
Copyright © 2023 Yuan, Ma and Liu.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
J Mol Biol. 1992 Sep 20;227(2):371-4
pubmed: 1404357
Proteins. 2018 May;86(5):592-598
pubmed: 29492997
BMC Bioinformatics. 2018 Aug 3;19(1):293
pubmed: 30075707
Bioinformatics. 2019 Jul 15;35(14):2403-2410
pubmed: 30535134
Proteins. 1999 Mar 1;34(4):508-19
pubmed: 10081963
Proteins. 2021 Dec;89(12):1607-1617
pubmed: 34533838
Bioinformatics. 2017 Sep 15;33(18):2842-2849
pubmed: 28430949
Neural Comput. 1997 Nov 15;9(8):1735-80
pubmed: 9377276
BMC Bioinformatics. 2019 Jun 17;20(1):341
pubmed: 31208331
Proteins. 2014 Feb;82 Suppl 2:1-6
pubmed: 24344053
Proteins. 1999 Feb 1;34(2):220-3
pubmed: 10022357
Biopolymers. 1983 Dec;22(12):2577-637
pubmed: 6667333
Sci Rep. 2018 Jun 29;8(1):9856
pubmed: 29959372
Proteins. 2019 Dec;87(12):1011-1020
pubmed: 31589781
J Chem Inf Model. 2014 Mar 24;54(3):992-1002
pubmed: 24571803
J Mol Biol. 1999 Sep 17;292(2):195-202
pubmed: 10493868
Nature. 2015 May 28;521(7553):436-44
pubmed: 26017442
Bioinformatics. 2000 Apr;16(4):404-5
pubmed: 10869041
J Mol Biol. 1988 Aug 20;202(4):865-84
pubmed: 3172241
J Mol Biol. 2001 Apr 27;308(2):397-407
pubmed: 11327775
Sci Rep. 2016 Jan 11;6:18962
pubmed: 26752681
Brief Bioinform. 2018 May 1;19(3):482-494
pubmed: 28040746
Nucleic Acids Res. 2015 Jul 1;43(W1):W389-94
pubmed: 25883141
Bioinformatics. 2014 Sep 15;30(18):2592-7
pubmed: 24860169
Proteins. 2019 Jun;87(6):520-527
pubmed: 30785653
Neural Netw. 2005 Jun-Jul;18(5-6):602-10
pubmed: 16112549
Nucleic Acids Res. 1997 Sep 1;25(17):3389-402
pubmed: 9254694
Proteins. 2018 Mar;86 Suppl 1:7-15
pubmed: 29082672
J Comput Chem. 2012 Jan 30;33(3):259-67
pubmed: 22045506
Proteins. 2016 Sep;84 Suppl 1:4-14
pubmed: 27171127
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W94-8
pubmed: 15980589
BMC Bioinformatics. 2014;15 Suppl 8:S3
pubmed: 25080939
Bioinformatics. 2020 Nov 1;36(17):4599-4608
pubmed: 32437517