Ten-year follow-up of auditory brainstem implants: From intra-operative electrical auditory brainstem responses to perceptual results.
Journal
PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081
Informations de publication
Date de publication:
2023
2023
Historique:
received:
26
08
2022
accepted:
10
02
2023
entrez:
2
3
2023
pubmed:
3
3
2023
medline:
7
3
2023
Statut:
epublish
Résumé
The auditory brainstem implant (ABI) can provide hearing sensation to individuals where the auditory nerve is damaged. However, patient outcomes with the ABI are typically much poorer than those for cochlear implant recipients. A major limitation to ABI outcomes is the number of implanted electrodes that can produce auditory responses to electric stimulation. One of the greatest challenges in ABI surgery is the intraoperative positioning of the electrode paddle, which must fit snugly within the cochlear nucleus complex. While there presently is no optimal procedure for intraoperative electrode positioning, intraoperative assessments may provide useful information regarding viable electrodes that may be included in patients' clinical speech processors. Currently, there is limited knowledge regarding the relationship between intraoperative data and post-operative outcomes. Furthermore, the relationship between initial ABI stimulation with and long-term perceptual outcomes is unknown. In this retrospective study, we reviewed intraoperative electrophysiological data from 24 ABI patients (16 adults and 8 children) obtained with two stimulation approaches that differed in terms of neural recruitment. The interoperative electrophysiological recordings were used to estimate the number of viable electrodes and were compared to the number of activated electrodes at initial clinical fitting. Regardless of the stimulation approach, the intraoperative estimate of viable electrodes greatly overestimated the number of active electrodes in the clinical map. The number of active electrodes was associated with long-term perceptual outcomes. Among patients with 10-year follow-up, at least 11/21 active electrodes were needed to support good word detection and closed-set recognition and 14/21 electrodes to support good open-set word and sentence recognition. Perceptual outcomes were better for children than for adults, despite a lower number of active electrodes.
Identifiants
pubmed: 36862753
doi: 10.1371/journal.pone.0282261
pii: PONE-D-22-23874
pmc: PMC9980821
doi:
Types de publication
Review
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0282261Informations de copyright
Copyright: © 2023 Veronese et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
Ear Hear. 2021 Nov-Dec 01;42(6):1741-1754
pubmed: 34282087
J Neurosurg. 1999 Sep;91(3):466-76
pubmed: 10470823
Int J Pediatr Otorhinolaryngol. 2017 Oct;101:158-163
pubmed: 28964288
Otolaryngol Head Neck Surg. 2015 Nov;153(5):739-50
pubmed: 26227469
Otolaryngol Head Neck Surg. 1993 Jun;108(6):624-33
pubmed: 8515999
Hear Res. 2008 Apr;238(1-2):110-7
pubmed: 17910997
Audiol Neurootol. 2014;19(6):386-94
pubmed: 25377987
Ann Otol Rhinol Laryngol Suppl. 1995 Sep;166:33-6
pubmed: 7668693
Otol Neurotol. 2008 Dec;29(8):1140-6
pubmed: 18849886
J Neurol Surg B Skull Base. 2015 Dec;76(6):440-50
pubmed: 27054058
Electroencephalogr Clin Neurophysiol. 1996 Nov;100(6):538-48
pubmed: 8980418
Otol Neurotol. 2014 Feb;35(2):260-70
pubmed: 24448286
Ear Hear. 2017 Nov/Dec;38(6):e343-e351
pubmed: 28700445
Otol Neurotol. 2003 Jan;24(1):79-82
pubmed: 12544033
Laryngoscope. 2020 Feb;130(2):507-513
pubmed: 31095742
Hear Res. 1987;29(1):1-32
pubmed: 3654394
J Laryngol Otol Suppl. 2000;(27):37-40
pubmed: 11211436
Ear Hear. 2011 May-Jun;32(3):286-99
pubmed: 21157353
Electroencephalogr Clin Neurophysiol. 1995 Jul;96(4):338-47
pubmed: 7635078
Otol Neurotol. 2014 Dec;35(10):1844-51
pubmed: 25325841
Audiol Neurootol. 2008;13(4):273-80
pubmed: 18259080
J Neurosurg. 2004 Jan;100(1):16-23
pubmed: 14743907
Int J Pediatr Otorhinolaryngol. 2001 Aug 20;60(2):99-111
pubmed: 11518586
Laryngoscope. 2018 Sep;128(9):2163-2169
pubmed: 29573425
J Am Acad Audiol. 2005 Apr;16(4):219-27
pubmed: 16050332
Ear Hear. 2002 Jun;23(3):170-83
pubmed: 12072610
Otol Neurotol. 2011 Feb;32(2):187-91
pubmed: 21224730
Cochlear Implants Int. 2016 Jul;17(4):163-171
pubmed: 27442073
Electroencephalogr Clin Neurophysiol. 1998 Jul;108(4):331-44
pubmed: 9714375
Neurosurgery. 2013 Mar;72(1 Suppl Operative):58-64; discussion 65
pubmed: 22895407
Adv Otorhinolaryngol. 2006;64:154-166
pubmed: 16891841
Laryngoscope. 2005 Nov;115(11):1974-8
pubmed: 16319608
Eur Arch Otorhinolaryngol. 2014 Jan;271(1):3-13
pubmed: 23404468
Am J Otol. 2000 Nov;21(6):826-36
pubmed: 11078071
Otol Neurotol. 2009 Aug;30(5):614-8
pubmed: 19546832
Laryngoscope. 1992 Nov;102(11):1293-5
pubmed: 1405993
Neurosurgery. 2015 Jun;11 Suppl 2:306-20; discussion 320-1
pubmed: 25793729