D1- and D2-type dopamine receptors are immunolocalized in pial and layer I astrocytes in the rat cerebral cortex.

dopamine receptor subtype immunohistochemistry pial astrocyte protoplasmic astrocyte pyramidal cell

Journal

Frontiers in neuroanatomy
ISSN: 1662-5129
Titre abrégé: Front Neuroanat
Pays: Switzerland
ID NLM: 101477943

Informations de publication

Date de publication:
2023
Historique:
received: 29 11 2022
accepted: 25 01 2023
entrez: 3 3 2023
pubmed: 4 3 2023
medline: 4 3 2023
Statut: epublish

Résumé

Pial astrocytes, a cellular component of the cerebral cortex surface structure, are observed in a wide range of mammalian species. Despite being recognized as such, the functional potential of pial astrocytes has long been overlooked. Our previous research demonstrated that pial astrocytes exhibit stronger immunoreactivity for muscarinic acetylcholine receptor M1 than protoplasmic astrocytes, indicating sensitivity to neuromodulators. Here, we examined whether pial astrocytes express receptors for dopamine, another crucial neuromodulator of cortical activity. We investigated the immunolocalization of each dopamine receptor subtype (D1R, D2R, D4R, D5R) in the rat cerebral cortex, and compared the intensity of immunoreactivity between pial astrocytes, protoplasmic astrocytes, and pyramidal cells. Our findings revealed that pial astrocytes and layer I astrocytes exhibit stronger D1R- and D4R-immunoreactivity than D2R and D5R. These immunoreactivities were primarily localized in the somata and thick processes of pial and layer I astrocytes. In contrast, protoplasmic astrocytes located in cortical layers II-VI displayed low or negligible immunoreactivities for dopamine receptors. D4R- and D5R-immunopositivity was distributed throughout pyramidal cells including somata and apical dendrites. These findings suggest that the dopaminergic system may regulate the activity of pial and layer I astrocytes

Identifiants

pubmed: 36865631
doi: 10.3389/fnana.2023.1111008
pmc: PMC9971002
doi:

Types de publication

Journal Article

Langues

eng

Pagination

1111008

Informations de copyright

Copyright © 2023 Oda and Funato.

Déclaration de conflit d'intérêts

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Références

Cell Mol Neurobiol. 2009 May;29(3):317-28
pubmed: 18975071
J Comp Neurol. 2018 Jun 1;526(8):1329-1350
pubmed: 29424434
J Neurosci Res. 2001 Dec 1;66(5):972-80
pubmed: 11746426
Trends Immunol. 2020 Sep;41(9):758-770
pubmed: 32819810
ASN Neuro. 2013 Oct 07;5(4):273-82
pubmed: 24059854
J Histochem Cytochem. 2002 Aug;50(8):1091-6
pubmed: 12133912
Trends Neurosci. 2021 Oct;44(10):781-792
pubmed: 34479758
Brain Struct Funct. 2017 Apr;222(3):1109-1129
pubmed: 27864630
Eur J Neurosci. 2006 Nov;24(9):2429-38
pubmed: 17100831
J Neuroimmunol. 1999 Nov 15;101(2):170-87
pubmed: 10580800
J Comp Neurol. 2001 Mar 26;432(1):119-36
pubmed: 11241381
Cereb Cortex. 2019 Aug 14;29(9):3813-3827
pubmed: 30295716
J Neurosci Res. 1995 Mar 1;40(4):551-6
pubmed: 7616615
Physiol Rev. 2018 Jan 1;98(1):239-389
pubmed: 29351512
J Neurosci. 2016 May 18;36(20):5661-73
pubmed: 27194343
J Comp Neurol. 2008 Feb 10;506(5):877-93
pubmed: 18076085
PLoS One. 2008 Jun 25;3(6):e2525
pubmed: 18575586
Science. 2015 Mar 6;347(6226):1138-42
pubmed: 25700174
J Comp Neurol. 2019 Jul 1;527(10):1654-1674
pubmed: 30552685
Cereb Cortex. 2019 Jul 5;29(7):3224-3242
pubmed: 30566584
J Neurosci. 1987 Jan;7(1):279-90
pubmed: 2879896
Cell. 2018 Aug 9;174(4):999-1014.e22
pubmed: 30096314
Brain Res. 2010 May 6;1329:89-102
pubmed: 20226768
Nat Commun. 2020 Mar 5;11(1):1220
pubmed: 32139688
Front Neurosci. 2015 Apr 07;9:114
pubmed: 25904839
Cereb Cortex. 2021 May 10;31(6):2913-2931
pubmed: 33558867
Sci Rep. 2020 Jan 20;10(1):631
pubmed: 31959788
J Comp Neurol. 2011 Jul 1;519(10):1914-30
pubmed: 21452232
J Biol Chem. 2008 Dec 26;283(52):36441-53
pubmed: 18984584
Neuroscience. 1996 Jul;73(1):131-43
pubmed: 8783237
Neurochem Res. 2015 Dec;40(12):2600-14
pubmed: 25894681
J Biol Chem. 2004 Aug 20;279(34):35671-8
pubmed: 15159403
Cereb Cortex. 2013 Jun;23(6):1463-72
pubmed: 22617854
Neuroscience. 1995 Apr;65(3):731-45
pubmed: 7609872
Anat Rec (Hoboken). 2013 Jul;296(7):995-1007
pubmed: 23674345
J Neurosci. 1998 Dec 15;18(24):10735-48
pubmed: 9852608
Front Cell Neurosci. 2017 Feb 08;11:27
pubmed: 28228718
Naunyn Schmiedebergs Arch Pharmacol. 2001 Apr;363(4):376-82
pubmed: 11330330
Cell Mol Neurobiol. 2019 Jan;39(1):31-59
pubmed: 30446950
Nat Commun. 2018 Apr 24;9(1):1623
pubmed: 29691400
Front Mol Neurosci. 2020 May 12;13:75
pubmed: 32477063
Trends Mol Med. 2018 Jun;24(6):542-559
pubmed: 29731353
J Neurosci. 2002 Aug 15;22(16):6991-7005
pubmed: 12177197
Front Neuroanat. 2015 May 19;9:59
pubmed: 26042000
Brain Res. 1979 Feb 2;161(2):303-10
pubmed: 31966
Neurosignals. 2013;21(1-2):61-74
pubmed: 22456324
Br Med J. 1893 Jul 29;2(1700):227-30
pubmed: 20754383
J Comp Neurol. 1995 Aug 21;359(2):340-9
pubmed: 7499533
Neuron. 2017 Nov 1;96(3):697-708
pubmed: 29096081
Nature. 1996 May 16;381(6579):245-8
pubmed: 8622768

Auteurs

Satoko Oda (S)

Department of Anatomy, Graduate School of Medicine, Toho University, Tokyo, Japan.

Hiromasa Funato (H)

Department of Anatomy, Graduate School of Medicine, Toho University, Tokyo, Japan.
International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, Tsukuba, Japan.

Classifications MeSH