High Resolution Membrane Structures within Hybrid Lipid-Polymer Vesicles Revealed by Combining X-Ray Scattering and Electron Microscopy.

block copolymers cryo-electron tomography hybrid vesicles membrane structures single particle analysis small angle X-ray scattering

Journal

Small (Weinheim an der Bergstrasse, Germany)
ISSN: 1613-6829
Titre abrégé: Small
Pays: Germany
ID NLM: 101235338

Informations de publication

Date de publication:
06 2023
Historique:
revised: 26 01 2023
received: 12 10 2022
medline: 2 6 2023
pubmed: 4 3 2023
entrez: 3 3 2023
Statut: ppublish

Résumé

Hybrid vesicles consisting of phospholipids and block-copolymers are increasingly finding applications in science and technology. Herein, small angle X-ray scattering (SAXS) and cryo-electron tomography (cryo-ET) are used to obtain detailed structural information about hybrid vesicles with different ratios of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and poly(1,2-butadiene-block-ethylene oxide) (PBd

Identifiants

pubmed: 36866488
doi: 10.1002/smll.202206267
doi:

Substances chimiques

Polymers 0
Lipid Bilayers 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2206267

Subventions

Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
Pays : United Kingdom

Informations de copyright

© 2023 The Authors. Small published by Wiley-VCH GmbH.

Références

J. W. Hindley, Y. Elani, C. M. McGilvery, S. Ali, C. L. Bevan, R. V. Law, O. Ces, Nat. Commun. 2018, 9, 1093.
T. Huang, Z. Hou, Q. Xu, L. Huang, C. Li, Y. Zhou, Langmuir 2017, 33, 340.
a) F. Meng, Z. Zhong, J. Feijen, Biomacromolecules 2009, 10, 197;
b) R. Molinaro, C. Corbo, J. O. Martinez, F. Taraballi, M. Evangelopoulos, S. Minardi, I. K. Yazdi, P. Zhao, E. De Rosa, M. Sherman, Nat. Mater. 2016, 15, 1037;
c) S. Khan, J. McCabe, K. Hill, P. A. Beales, J. Colloid Interface Sci. 2020, 562, 418.
a) J.-L. Rigaud, B. Pitard, D. Levy, Biochim. Biophys. Acta, Bioenerg. 1995, 1231, 223;
b) D. Papahadjopoulos, H. K. Kimelberg, Prog. Surf. Sci. 1974, 4, 141.
P. A. Beales, S. Khan, S. P. Muench, L. J. C. Jeuken, Biochem. Soc. Trans. 2017, 45, 15.
a) S. S. Hallan, P. Kaur, V. Kaur, N. Mishra, B. Vaidya, Artif. Cells, Nanomed., Biotechnol. 2016, 44, 334;
b) S. Khan, M. Li, S. P. Muench, L. J. C. Jeuken, P. A. Beales, Chem. Commun. 2016, 52, 11020;
c) E. Brodszkij, I. N. Westensee, S. F. Holleufer, C. Ade, P. D. D. Andres, J. S. Pedersen, B. Städler, Appl. Mater. Today 2022, 29, 101549;
d) N. Hamada, S. Gakhar, M. L. Longo, Biochim. Biophys. Acta, Bioenerg. 2021, 1863, 183552;
e) N. Marušič, L. Otrin, J. Rauchhaus, Z. Zhao, F. L. Kyrilis, F. Hamdi, P. L. Kastritis, R. Dimova, I. Ivanov, K. Sundmacher, Proc. Natl. Acad. Sci. USA 2022, 119, e2122468119;
f) Y. K. Go, C. Leal, Chem. Rev. 2021, 121, 13996;
g) J. F. Le Meins, C. Schatz, S. Lecommandoux, O. Sandre, Mater. Today 2013, 16, 397;
h) E. Reimhult, M. M. Virk, J. Biomed. Res. 2021, 35, 301;
i) D. Chen, M. M. Santore, Soft Matter 2015, 11, 2617.
S. Majd, E. C. Yusko, Y. N. Billeh, M. X. Macrae, J. Yang, M. Mayer, Curr. Opin. Biotechnol. 2010, 21, 439.
a) C. Hunte, Biochem. Soc. Trans. 2005, 33, 938;
b) N. P. Barrera, M. Zhou, C. V. Robinson, Trends Cell Biol. 2013, 23, 1.
a) H. Bermudez, A. K. Brannan, D. A. Hammer, F. S. Bates, D. E. Discher, Macromolecules 2002, 35, 8203;
b) R. Seneviratne, S. Khan, E. Moscrop, M. Rappolt, S. P. Muench, L. J. C. Jeuken, P. A. Beales, Methods 2018, 147, 142;
c) C. LoPresti, H. Lomas, M. Massignani, T. Smart, G. Battaglia, J. Mater. Chem. 2009, 19, 3576.
a) J. S. Lee, J. Feijen, J. Controlled Release 2012, 161, 473;
b) D. A. Christian, S. Cai, D. M. Bowen, Y. Kim, J. D. Pajerowski, D. E. Discher, Eur. J. Pharm. Biopharm. 2009, 71, 463.
S. F. M. van Dongen, W. P. R. Verdurmen, R. J. R. W. Peters, R. J. M. Nolte, R. Brock, J. C. M. van Hest, Angew. Chem. Int. Ed. 2010, 49, 7213.
H. Lomas, I. Canton, S. MacNeil, J. Du, S. P. Armes, A. J. Ryan, A. L. Lewis, G. Battaglia, Adv. Mater. 2007, 19, 4238.
a) D. E. Discher, Science 2002, 297, 967;
b) N. Muhammad, T. Dworeck, M. Fioroni, U. Schwaneberg, J. Nanobiotechnol. 2011, 9, 8.
a) W. F. Paxton, P. T. McAninch, K. E. Achyuthan, S. H. R. Shin, H. L. Monteith, Colloids Surf., B 2017, 159, 268;
b) L. Otrin, N. Marušič, C. Bednarz, T. Vidaković-Koch, I. Lieberwirth, K. Landfester, K. Sundmacher, Nano Lett. 2017, 17, 6816;
c) C. Kleineberg, C. Wölfer, A. Abbasnia, D. Pischel, C. Bednarz, I. Ivanov, T. Heitkamp, M. Börsch, K. Sundmacher, T. Vidaković-Koch, ChemBioChem 2020, 21, 2149;
d) R. Goers, J. Thoma, N. Ritzmann, A. Di Silvestro, C. Alter, G. Gunkel-Grabole, D. Fotiadis, D. J. Müller, W. Meier, Commun. Chem. 2018, 1, 35;
e) S. Rottet, S. Iqbal, P. A. Beales, A. Lin, J. Lee, M. Rug, C. Scott, R. Callaghan, Polymers 2020, 12, 1049;
f) M. L. Jacobs, M. A. Boyd, N. P. Kamat, Proc. Natl. Acad. Sci. USA 2019, 116, 4031;
g) R. Catania, J. Machin, M. Rappolt, S. P. Muench, P. A. Beales, L. J. C. Jeuken, Macromolecules 2022, 55, 3415.
a) R. Seneviratne, R. Catania, M. Rappolt, L. J. C. Jeuken, P. A. Beales, Soft Matter 2022, 18, 1294;
b) R. Seneviratne, L. J. C. Jeuken, M. Rappolt, P. A. Beales, Polymers 2020, 12, 914.
S. Lim, H.-P. De Hoog, A. Parikh, M. Nallani, B. Liedberg, Polymers 2013, 5, 1102.
a) A. F. Barton, CRC Handbook of Solubility Parameters and other Cohesion Parameters, Routledge, New York, NY 2017;
b) A. F. Barton, Handbook of Polymer-Liquid Interaction Parameters and Solubility Parameters, CRC Press, Boca Raton, FL 1990.
C. Zaba, S. Ritz, C.-W. D. Tan, S. Zayni, M. Müller, U. Reuning, E.-K. Sinner, ChemBioChem 2015, 16, 1740.
C. Magnani, C. Montis, G. Mangiapia, A. F. Mingotaud, C. Mingotaud, C. Roux, P. Joseph, D. Berti, B. Lonetti, Colloids Surf., B 2018, 168, 18.
a) J. Nam, P. A. Beales, T. K. Vanderlick, Langmuir 2011, 27, 1;
b) J. Nam, T. K. Vanderlick, P. A. Beales, Soft Matter 2012, 8, 7982.
M. Kumar, J. E. O. Habel, Y.-X. Shen, W. P. Meier, T. Walz, J. Am. Chem. Soc. 2012, 134, 18631.
A. Balestri, L. Chiappisi, C. Montis, S. Micciulla, B. Lonetti, D. Berti, Langmuir 2020, 36, 10941.
a) M. Chemin, P.-M. Brun, S. Lecommandoux, O. Sandre, J.-F. L. Meins, Soft Matter 2012, 8, 2867;
b) M. Fauquignon, E. Courtecuisse, R. Josselin, A. Mutschler, A. Brûlet, M. Schmutz, J.-F. L. Meins, J. Colloid Interface Sci. 2021, 604, 575.
a) Y. Tahara, Y. Fujiyoshi, Micron 1994, 25, 141;
b) P. M. Frederik, D. H. W. Hubert, Methods Enzymol. 2005, 391, 431;
c) Y.-Y. Won, A. K. Brannan, H. T. Davis, F. S. Bates, J. Phys. Chem. B 2002, 106, 3354.
a) J. S. Kim, B. Afsari, G. S. Chirikjian, J. Comput. Biol. 2017, 24, 13;
b) A. Jiménez, S. Jonic, T. Majtner, J. Otón, J. L. Vilas, D. Maluenda, J. Mota, E. Ramírez-Aportela, M. Martínez, Y. Rancel, J. Segura, R. Sánchez-García, R. Melero, L. Del Cano, P. Conesa, L. Skjaerven, R. Marabini, J. M. Carazo, C. O. S. Sorzano, Bioinformatics 2019, 35, 2427.
a) T. P. Smart, O. O. Mykhaylyk, A. J. Ryan, G. Battaglia, Soft Matter 2009, 5, 3607;
b) M. Kowalik, A. B. Schantz, A. Naqi, Y. Shen, I. Sines, J. K. Maranas, M. Kumar, RSC Adv. 2017, 7, 54756.
a) R. Nygaard, J. Kim, F. Mancia, Curr. Opin. Struct. Biol. 2020, 64, 26;
b) M. R. Baker, G. Fan, I. I. Serysheva, Eur. J. Transl. Myology 2015, 25, 35;
c) C. Sun, R. B. Gennis, Chem. Phys. Lipids 2019, 221, 114;
d) M. Parmar, S. Rawson, C. A. Scarff, A. Goldman, T. R. Dafforn, S. P. Muench, V. L. Postis, Biochim. Biophys. Acta, Bioenerg. 2018, 1860, 378.
E. J. Boekema, M. Folea, R. Kouřil, Photosynth. Res. 2009, 102, 189.
a) M. R. Brzustowicz, A. T. Brunger, J. Appl. Crystallogr. 2005, 38, 126;
b) N. Kučerka, J. F. Nagle, J. N. Sachs, S. E. Feller, J. Pencer, A. Jackson, J. Katsaras, Biophys. J. 2008, 95, 2356.
C.-J. Su, S.-S. Wu, U. S. Jeng, M.-T. Lee, A.-C. Su, K.-F. Liao, W.-Y. Lin, Y.-S. Huang, C.-Y. Chen, Biochim. Biophys. Acta, Bioenerg. 2013, 1828, 528.
a) A. Iglic, P. L. Perez, M. Rappolt, Advances in Biomembranes and Lipid Self-Assembly, Academic Press, Cambridge, MA 2019;
b) T. Kondela, P. Hrubovčák, D. Soloviov, D. Badreeva, T. Murugova, V. Skoi, A. Kuklin, O. Ivankov, N. Kučerka, Soft Matter Systems for Biomedical Applications, Springer, Berlin 2022, p. 265.
J. Wang, Protein Sci. 2017, 26, 1619.
C. E. Cornell, A. Mileant, N. Thakkar, K. K. Lee, S. L. Keller, Proc. Natl. Acad. Sci. USA 2020, 117, 19713.
J. Canny, IEEE Trans. Pattern Anal. Mach. Intell. 1986, PAMI-8, 679.
W. C. Poon, D. Andelman, Soft Condensed Matter Physics in Molecular and Cell Biology, CRC Press, Boca Raton, FL 2006.
a) G. Pabst, J. Katsaras, V. A. Raghunathan, M. Rappolt, Langmuir 2003, 19, 1716;
b) P. Heftberger, B. Kollmitzer, F. A. Heberle, J. Pan, M. Rappolt, H. Amenitsch, N. Kučerka, J. Katsaras, G. Pabst, J. Appl. Crystallogr. 2014, 47, 173.
G. Pabst, M. Rappolt, H. Amenitsch, P. Laggner, Phys Rev E 2000, 62, 4000.
J. F. Nagle, S. Tristram-Nagle, Biochim. Biophys. Acta, Rev. Biomembr. 2000, 1469, 159.
M. Rappolt, J. Appl. Phys. 2010, 107, 084701.
G. Battaglia, A. J. Ryan, J. Am. Chem. Soc. 2005, 127, 8757.
L. Fetters, D. Lohse, R. Colby, in Physical Properties of Polymers Handbook, Springer, Berlin 2007, p. 447.
W. W. Graessley, J. F. Douglas, Phys. Today 2005, 58, 64.
N. Kučerka, M.-P. Nieh, J. Katsaras, Biochim. Biophys. Acta, Bioenerg. 2011, 1808, 2761.
A. J. Smith, S. G. Alcock, L. S. Davidson, J. H. Emmins, J. C. H. Bardsley, P. Holloway, M. Malfois, A. R. Marshall, C. L. Pizzey, S. E. Rogers, O. Shebanova, T. Snow, J. P. Sutter, E. P. Williams, N. J. Terrill, J. Synchrotron Radiat. 2021, 28, 939.
M. Basham, J. Filik, M. T. Wharmby, P. C. Y. Chang, B. El Kassaby, M. Gerring, J. Aishima, K. Levik, B. C. A. Pulford, I. Sikharulidze, D. Sneddon, M. Webber, S. S. Dhesi, F. Maccherozzi, O. Svensson, S. Brockhauser, G. Naray, A. W. Ashton, J. Synchrotron Radiat. 2015, 22, 853.

Auteurs

Rashmi Seneviratne (R)

School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.

Georgina Coates (G)

School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.

Zexi Xu (Z)

School of Food Science and Nutrition, School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.

Caitlin E Cornell (CE)

Department of Bioengineering, University of California, Berkeley, CA, 94720, USA.

Rebecca F Thompson (RF)

School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.

Amin Sadeghpour (A)

School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK.

Daniel P Maskell (DP)

School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.

Lars J C Jeuken (LJC)

Leiden Institute of Chemistry, Leiden University, PC Box 9502, Leiden, 2300 RA, Netherlands.

Michael Rappolt (M)

School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK.

Paul A Beales (PA)

School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.

Articles similaires

Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria
Silicon Dioxide Water Hot Temperature Compressive Strength X-Ray Diffraction
Animals Huntington Disease Mitochondria Neurons Mice
Cobalt Azo Compounds Ferric Compounds Polyesters Photolysis

Classifications MeSH