Deriving mechanism-based pharmacodynamic models by reducing quantitative systems pharmacology models: An application to warfarin.
Journal
CPT: pharmacometrics & systems pharmacology
ISSN: 2163-8306
Titre abrégé: CPT Pharmacometrics Syst Pharmacol
Pays: United States
ID NLM: 101580011
Informations de publication
Date de publication:
04 2023
04 2023
Historique:
revised:
18
10
2022
received:
14
07
2022
accepted:
29
11
2022
medline:
12
4
2023
pubmed:
4
3
2023
entrez:
3
3
2023
Statut:
ppublish
Résumé
Quantitative systems pharmacology (QSP) models integrate comprehensive qualitative and quantitative knowledge about pharmacologically relevant processes. We previously proposed a first approach to leverage the knowledge in QSP models to derive simpler, mechanism-based pharmacodynamic (PD) models. Their complexity, however, is typically still too large to be used in the population analysis of clinical data. Here, we extend the approach beyond state reduction to also include the simplification of reaction rates, elimination of reactions, and analytic solutions. We additionally ensure that the reduced model maintains a prespecified approximation quality not only for a reference individual but also for a diverse virtual population. We illustrate the extended approach for the warfarin effect on blood coagulation. Using the model-reduction approach, we derive a novel small-scale warfarin/international normalized ratio model and demonstrate its suitability for biomarker identification. Due to the systematic nature of the approach in comparison with empirical model building, the proposed model-reduction algorithm provides an improved rationale to build PD models also from QSP models in other applications.
Identifiants
pubmed: 36866520
doi: 10.1002/psp4.12903
pmc: PMC10088086
doi:
Substances chimiques
Warfarin
5Q7ZVV76EI
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
432-443Informations de copyright
© 2023 The Authors. CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.
Références
Bioinformatics. 2008 Mar 15;24(6):848-54
pubmed: 18267948
Front Pharmacol. 2020 Jul 14;11:1041
pubmed: 32765265
Thromb J. 2003 Nov 30;1(1):7
pubmed: 14969588
Eur J Pharm Sci. 2017 Nov 15;109S:S9-S14
pubmed: 28502675
Br J Clin Pharmacol. 2021 Apr;87(4):1717-1729
pubmed: 33080066
Clin Pharmacol Ther. 2009 Sep;86(3):290-8
pubmed: 19516255
J Pharmacokinet Pharmacodyn. 2018 Aug;45(4):537-555
pubmed: 29582349
Br J Clin Pharmacol. 2017 Apr;83(4):823-835
pubmed: 27763679
J Pharmacokinet Pharmacodyn. 2021 Aug;48(4):509-523
pubmed: 33651241
Ther Drug Monit. 2003 Feb;25(1):36-40
pubmed: 12548142
J Pharmacokinet Pharmacodyn. 2022 Jun;49(3):271-282
pubmed: 34652608
Wiley Interdiscip Rev Syst Biol Med. 2015 Jul-Aug;7(4):221-41
pubmed: 25950758
CPT Pharmacometrics Syst Pharmacol. 2014 Jan 08;3:e90
pubmed: 24402117
Eur J Clin Pharmacol. 2017 Jun;73(6):699-707
pubmed: 28382498
CPT Pharmacometrics Syst Pharmacol. 2023 Apr;12(4):432-443
pubmed: 36866520
Br J Haematol. 2001 Aug;114(2):271-80
pubmed: 11529844
Clin Pharmacol Ther. 2007 Apr;81(4):529-38
pubmed: 17301738
Br J Clin Pharmacol. 2018 Mar;84(3):462-476
pubmed: 29194718
Clin Pharmacol Ther. 2017 Sep;102(3):397-404
pubmed: 28198005
J Pharmacokinet Pharmacodyn. 2018 Feb;45(1):139-157
pubmed: 29243176
N Engl J Med. 2009 Feb 19;360(8):753-64
pubmed: 19228618
CPT Pharmacometrics Syst Pharmacol. 2020 Nov;9(11):613-616
pubmed: 32970387
Clin Pharmacokinet. 2013 Jan;52(1):59-68
pubmed: 23329393
Front Physiol. 2014 Nov 07;5:417
pubmed: 25426077
Sci Rep. 2018 Aug 13;8(1):12041
pubmed: 30104739
PLoS One. 2014 Aug 22;9(8):e105891
pubmed: 25148255
Clin Pharmacol Ther. 2008 Sep;84(3):326-31
pubmed: 18305455
J Pharmacokinet Pharmacodyn. 2009 Dec;36(6):613-28
pubmed: 19936895
Clin Pharmacol Ther. 2010 Jun;87(6):727-34
pubmed: 20410877