Congenital anomalies of the kidney and urinary tract: defining risk factors of disease progression and determinants of outcomes.
CAKUT
Kidney
Malformations
Nephrogenesis
Outcome
Risk factor
Journal
Pediatric nephrology (Berlin, Germany)
ISSN: 1432-198X
Titre abrégé: Pediatr Nephrol
Pays: Germany
ID NLM: 8708728
Informations de publication
Date de publication:
12 2023
12 2023
Historique:
received:
15
12
2022
accepted:
30
01
2023
revised:
23
01
2023
medline:
23
10
2023
pubmed:
4
3
2023
entrez:
3
3
2023
Statut:
ppublish
Résumé
Congenital anomalies of the kidney and urinary tract (CAKUT) result from disruptions in normal kidney and urinary tract development during fetal life and collectively represent the most common cause of kidney failure in children worldwide. The antenatal determinants of CAKUT are diverse and include mutations in genes responsible for normal nephrogenesis, alterations in maternal and fetal environments, and obstruction within the normal developing urinary tract. The resultant clinical phenotypes are complex and depend on the timing of the insult, the penetrance of underlying gene mutations, and the severity and timing of obstruction related to the sequence of normal kidney development. Consequently, there is a broad spectrum of outcomes for children born with CAKUT. In this review, we explore the most common forms of CAKUT and those most likely to develop long-term complications of their associated kidney malformations. We discuss the relevant outcomes for the different forms of CAKUT and what is known about clinical characteristics across the CAKUT spectrum that are risk factors of long-term kidney injury and disease progression.
Identifiants
pubmed: 36867265
doi: 10.1007/s00467-023-05899-w
pii: 10.1007/s00467-023-05899-w
doi:
Types de publication
Review
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3963-3973Informations de copyright
© 2023. The Author(s), under exclusive licence to International Pediatric Nephrology Association.
Références
Skinner MA, Safford SD, Reeves JG, Jackson ME, Freemerman AJ (2008) Renal aplasia in humans is associated with RET mutations. Am J Hum Genet 82:344–351
pubmed: 18252215
pmcid: 2427293
Sanchez MP, Silos-Santiago I, Frisen J, He B, Lira SA, Barbacid M (1996) Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 382:70–73
pubmed: 8657306
Matsell DG (1998) Renal dysplasia: new approaches to an old problem. Am J Kidney Dis 32:535–543
pubmed: 9774112
Brenner BM, Mackenzie HS (1997) Nephron mass as a risk factor for progression of renal disease. Kidney Int Suppl 63:S124-127
pubmed: 9407439
van der Ven AT, Vivante A, Hildebrandt F (2018) Novel insights into the pathogenesis of monogenic congenital anomalies of the kidney and urinary Tract. J Am Soc Nephrol 29:36–50
pubmed: 29079659
Verbitsky M, Westland R, Perez A, Kiryluk K, Liu Q, Krithivasan P, Mitrotti A, Fasel DA, Batourina E, Sampson MG, Bodria M, Werth M, Kao C, Martino J, Capone VP, Vivante A, Shril S, Kil BH, Marasa M, Zhang JY, Na YJ, Lim TY, Ahram D, Weng PL, Heinzen EL, Carrea A, Piaggio G, Gesualdo L, Manca V, Masnata G, Gigante M, Cusi D, Izzi C, Scolari F, van Wijk JAE, Saraga M, Santoro D, Conti G, Zamboli P, White H, Drozdz D, Zachwieja K, Miklaszewska M, Tkaczyk M, Tomczyk D, Krakowska A, Sikora P, Jarmolinski T, Borszewska-Kornacka MK, Pawluch R, Szczepanska M, Adamczyk P, Mizerska-Wasiak M, Krzemien G, Szmigielska A, Zaniew M, Dobson MG, Darlow JM, Puri P, Barton DE, Furth SL, Warady BA, Gucev Z, Lozanovski VJ, Tasic V, Pisani I, Allegri L, Rodas LM, Campistol JM, Jeanpierre C, Alam S, Casale P, Wong CS, Lin F, Miranda DM, Oliveira EA, Simoes ESAC, Barasch JM, Levy B, Wu N, Hildebrandt F, Ghiggeri GM, Latos-Bielenska A, Materna-Kiryluk A, Zhang F, Hakonarson H, Papaioannou VE, Mendelsohn CL, Gharavi AG, Sanna-Cherchi S (2019) The copy number variation landscape of congenital anomalies of the kidney and urinary tract. Nat Genet 51:117–127
pubmed: 30578417
Nicolaou N, Renkema KY, Bongers EM, Giles RH, Knoers NV (2015) Genetic, environmental, and epigenetic factors involved in CAKUT. Nat Rev Nephrol 11:720–731
pubmed: 26281895
Westland R, Renkema KY, Knoers N (2020) Clinical integration of genome diagnostics for congenital anomalies of the kidney and urinary tract. Clin J Am Soc Nephrol 16:128–137
pubmed: 32312792
pmcid: 7792653
Charlton JR, Springsteen CH, Carmody JB (2014) Nephron number and its determinants in early life: a primer. Pediatr Nephrol 29:2299–2308
pubmed: 24488483
Dart AB, Ruth CA, Sellers EA, Au W, Dean HJ (2015) Maternal diabetes mellitus and congenital anomalies of the kidney and urinary tract (CAKUT) in the child. Am J Kidney Dis 65:684–691
pubmed: 25595566
Merlet-Benichou C, Vilar J, Lelievre-Pegorier M, Gilbert T (1999) Role of retinoids in renal development: pathophysiological implication. Curr Opin Nephrol Hypertens 8:39–43
pubmed: 9914859
Hernandez-Diaz S, Werler MM, Walker AM, Mitchell AA (2000) Folic acid antagonists during pregnancy and the risk of birth defects. N Engl J Med 343:1608–1614
pubmed: 11096168
Sekine T, Miura K, Takahashi K, Igarashi T (2009) Children’s toxicology from bench to bed--drug-induced renal injury (1): the toxic effects of ARB/ACEI on fetal kidney development. J Toxicol Sci 34(Suppl 2):SP245-250
pubmed: 19571476
Groen In ’t Woud S, Renkema KY, Schreuder MF, Wijers CH, van der Zanden LF, Knoers NV, Feitz WF, Bongers EM, Roeleveld N, van Rooij IA (2016) Maternal risk factors involved in specific congenital anomalies of the kidney and urinary tract: a case-control study. Birth Defects Res A Clin Mol Teratol 106:596–603
pubmed: 27040999
Matsell DG, Tarantal AF (2002) Experimental models of fetal obstructive nephropathy. Pediatr Nephrol 17:470–476
pubmed: 12172756
Kerecuk L, Schreuder MF, Woolf AS (2008) Renal tract malformations: perspectives for nephrologists. Nat Clin Pract Nephrol 4:312–325
pubmed: 18446149
Stein D, McNamara E (2022) Congenital anomalies of the kidneys and urinary tract. Clin Perinatol 49:791–798
pubmed: 36113935
Chiodini B, Ghassemi M, Khelif K, Ismaili K (2019) Clinical outcome of children with antenatally diagnosed hydronephrosis. Front Pediatr 7:103
pubmed: 30984723
pmcid: 6449796
Kumar BH, Krishnamurthy S, Chandrasekaran V, Jindal B, Ananthakrishnan R (2019) Clinical spectrum of congenital anomalies of kidney and urinary tract in children. Indian Pediatr 56:566–570
pubmed: 31333211
Lee RS, Cendron M, Kinnamon DD, Nguyen HT (2006) Antenatal hydronephrosis as a predictor of postnatal outcome: a meta-analysis. Pediatrics 118:586–593
pubmed: 16882811
Katsoufis CP (2020) Clinical predictors of chronic kidney disease in congenital lower urinary tract obstruction. Pediatr Nephrol 35:1193–1201
pubmed: 31197474
Avner ED, Harmon WE, Niaudet P, Yoshikawa N, Emma F, Goldstein SL, Ohio Library and Information Network (2016) Pediatric nephrology. Springer reference. Springer, Heidelberg, p 1 online resource
Ramanathan S, Kumar D, Khanna M, Al Heidous M, Sheikh A, Virmani V, Palaniappan Y (2016) Multi-modality imaging review of congenital abnormalities of kidney and upper urinary tract. World J Radiol 8:132–141
pubmed: 26981222
pmcid: 4770175
Jawa NA, Rosenblum ND, Radhakrishnan S, Pearl RJ, Levin L, Matsuda-Abedini M (2021) Reducing unnecessary imaging in children with multicystic dysplastic kidney or solitary kidney. Pediatrics 148:e2020035550. https://doi.org/10.1542/peds.2020-035550
doi: 10.1542/peds.2020-035550
pubmed: 34230093
Murugapoopathy V, Gupta IR (2020) A primer on congenital anomalies of the kidneys and urinary tracts (CAKUT). Clin J Am Soc Nephrol 15:723–731
pubmed: 32188635
pmcid: 7269211
Jain S, Chen F (2019) Developmental pathology of congenital kidney and urinary tract anomalies. Clin Kidney J 12:382–399
pubmed: 31198539
Rodriguez MM (2014) Congenital anomalies of the kidney and the urinary tract (CAKUT). Fetal Pediatr Pathol 33:293–320
pubmed: 25313840
pmcid: 4266037
McLeod DJ, Szymanski KM, Gong E, Granberg C, Reddy P, Sebastiao Y, Fuchs M, Gargollo P, Whittam B, VanderBrink BA, Pediatric Urology Midwest Alliance (PUMA) (2019) Renal replacement therapy and intermittent catheterization risk in posterior urethral valves. Pediatrics 143:e20182656. https://doi.org/10.1542/peds.2018-2656
doi: 10.1542/peds.2018-2656
pubmed: 30709926
Noh PH, Cooper CS, Winkler AC, Zderic SA, Snyder HM 3rd, Canning DA (1999) Prognostic factors for long-term renal function in boys with the prune-belly syndrome. J Urol 162:1399–1401
pubmed: 10492223
Westland R, Schreuder MF, Bökenkamp A, Spreeuwenberg MD, van Wijk JAE (2011) Renal injury in children with a solitary functioning kidney—the KIMONO study. Nephrol Dial Transplant 26:1533–1541
pubmed: 21427076
Poggiali IV, Simoes ESAC, Vasconcelos MA, Dias CS, Gomes IR, Carvalho RA, Oliveira MCL, Pinheiro SV, Mak RH, Oliveira EA (2019) A clinical predictive model of renal injury in children with congenital solitary functioning kidney. Pediatr Nephrol 34:465–474
pubmed: 30324507
Bisceglia M, Galliani CA, Senger C, Stallone C, Sessa A (2006) Renal cystic diseases: a review. Adv Anat Pathol 13:26–56
pubmed: 16462154
Westland R, Schreuder MF, Bokenkamp A, Spreeuwenberg MD, van Wijk JA (2011) Renal injury in children with a solitary functioning kidney–the KIMONO study. Nephrol Dial Transplant 26:1533–1541
pubmed: 21427076
La Scola C, Ammenti A, Bertulli C, Bodria M, Brugnara M, Camilla R, Capone V, Casadio L, Chimenz R, Conte ML, Conversano E, Corrado C, Guarino S, Luongo I, Marsciani M, Marzuillo P, Meneghesso D, Pennesi M, Pugliese F, Pusceddu S, Ravaioli E, Taroni F, Vergine G, Peruzzi L, Montini G (2022) Management of the congenital solitary kidney: consensus recommendations of the Italian Society of Pediatric Nephrology. Pediatr Nephrol 37:2185–2207
pubmed: 35713730
pmcid: 9307550
Matsell DG, Bao C, Po White T, Chan E, Matsell E, Cojocaru D, Catapang M, Pediatric Nephrology Clinical Pathway Development Team (2021) Outcomes of solitary functioning kidneys-renal agenesis is different than multicystic dysplastic kidney disease. Pediatr Nephrol 36:3673–3680
pubmed: 33954810
Westland R, Schreuder MF, Ket JC, van Wijk JA (2013) Unilateral renal agenesis: a systematic review on associated anomalies and renal injury. Nephrol Dial Transplant 28:1844–1855
pubmed: 23449343
ESCAPE Trial Group, Wuhl E, Trivelli A, Picca S, Litwin M, Peco-Antic A, Zurowska A, Testa S, Jankauskiene A, Emre S, Caldas-Afonso A, Anarat A, Niaudet P, Mir S, Bakkaloglu A, Enke B, Montini G, Wingen AM, Sallay P, Jeck N, Berg U, Caliskan S, Wygoda S, Hohbach-Hohenfellner K, Dusek J, Urasinski T, Arbeiter K, Neuhaus T, Gellermann J, Drozdz D, Fischbach M, Moller K, Wigger M, Peruzzi L, Mehls O, Schaefer F (2009) Strict blood-pressure control and progression of renal failure in children. N Engl J Med 361:1639–1650
Matsell DG, Cojocaru D, Matsell EW, Eddy AA (2015) The impact of small kidneys. Pediatr Nephrol 30:1501–1509
pubmed: 25794549
Wuhl E, Mehls O, Schaefer F, ESCAPE Trial Group (2004) Antihypertensive and antiproteinuric efficacy of ramipril in children with chronic renal failure. Kidney Int 66:768–776
pubmed: 15253732
Yadav P, Rickard M, Kim JK, Richter J, Lolas M, Alshammari D, Chua ME, Dos Santos J, Lorenzo AJ (2022) Comparison of outcomes of prenatal versus postnatal presentation of posterior urethral valves: a systematic review and meta-analysis. World J Urol 40:2181–2194
pubmed: 35943527
Vasconcelos MA, Oliveira EA, Simoes ESAC, Dias CS, Mak RH, Fonseca CC, Campos APM, Steyerberg EW, Vergouwe Y (2019) A predictive model of postnatal surgical intervention in children with prenatally detected congenital anomalies of the kidney and urinary tract. Front Pediatr 7:120. https://doi.org/10.3389/fped.2019.00120
doi: 10.3389/fped.2019.00120
pubmed: 31001505
pmcid: 6454042
Matsell DG, Yu S, Morrison SJ (2016) Antenatal determinants of long-term kidney outcome in boys with posterior urethral valves. Fetal Diagn Ther 39:214–221
pubmed: 26375276
Luyckx VA, Tuttle KR, Garcia-Garcia G, Gharbi MB, Heerspink HJL, Johnson DW, Liu ZH, Massy ZA, Moe O, Nelson RG, Sola L, Wheeler DC, White SL (2017) Reducing major risk factors for chronic kidney disease. Kidney Int Suppl (2011) 7:71–87
McClellan WM, Flanders WD (2003) Risk factors for progressive chronic kidney disease. J Am Soc Nephrol 14:S65-70
pubmed: 12819305
Collister D, Ferguson T, Komenda P, Tangri N (2016) The patterns, risk factors, and prediction of progression in chronic kidney disease: a narrative review. Semin Nephrol 36:273–282
pubmed: 27475658
Staples AO, Greenbaum LA, Smith JM, Gipson DS, Filler G, Warady BA, Martz K, Wong CS (2010) Association between clinical risk factors and progression of chronic kidney disease in children. Clin J Am Soc Nephrol 5:2172–2179
pubmed: 20813855
pmcid: 2994077
Ardissino G, Testa S, Dacco V, Vigano S, Taioli E, Claris-Appiani A, Procaccio M, Avolio L, Ciofani A, DelloStrologo L, Montini G, Ital Kid Project (2004) Proteinuria as a predictor of disease progression in children with hypodysplastic nephropathy. Data from the Ital Kid Project. Pediatr Nephrol 19:172–177
pubmed: 14673629
Ellis D, Moritz ML, Vats A, Janosky JE (2004) Antihypertensive and renoprotective efficacy and safety of losartan. A long-term study in children with renal disorders. Am J Hypertens 17:928–935
pubmed: 15485756
Mitsnefes M, Ho PL, McEnery PT (2003) Hypertension and progression of chronic renal insufficiency in children: a report of the North American Pediatric Renal Transplant Cooperative Study (NAPRTCS). J Am Soc Nephrol 14:2618–2622
pubmed: 14514740
Furth SL, Cole SR, Fadrowski JJ, Gerson A, Pierce CB, Chandra M, Weiss R, Kaskel F, Council of Pediatric Nephrology and Urology, New York, New Jersey; Kidney and Urology Foundation of America (2007) The association of anemia and hypoalbuminemia with accelerated decline in GFR among adolescents with chronic kidney disease. Pediatr Nephrol 22:265–271
pubmed: 17120062
Warady BA, Abraham AG, Schwartz GJ, Wong CS, Munoz A, Betoko A, Mitsnefes M, Kaskel F, Greenbaum LA, Mak RH, Flynn J, Moxey-Mims MM, Furth S (2015) Predictors of rapid progression of glomerular and nonglomerular kidney disease in children and adolescents: the Chronic Kidney Disease in Children (CKiD) cohort. Am J Kidney Dis 65:878–888
pubmed: 25799137
pmcid: 4578873
Furth SL, Pierce C, Hui WF, White CA, Wong CS, Schaefer F, Wuhl E, Abraham AG, Warady BA, Chronic Kidney Disease in Children (CKiD); Effect of Strict Blood Pressure Control and ACE Inhibition on the Progression of CRF in Pediatric Patients (ESCAPE) Study Investigators (2018) Estimating time to ESRD in children with CKD. Am J Kidney Dis 71:783–792
pubmed: 29653769
pmcid: 5970998
Klaus R, Lange-Sperandio B (2022) Chronic kidney disease in boys with posterior urethral valves-pathogenesis, prognosis and management. Biomedicines 10:1894. https://doi.org/10.1007/s00467-022-05834-5
doi: 10.1007/s00467-022-05834-5
pubmed: 36009441
pmcid: 9405968
McLeod DJ, Sebastiao YV, Ching CB, Greenberg JH, Furth SL, Becknell B (2020) Longitudinal kidney injury biomarker trajectories in children with obstructive uropathy. Pediatr Nephrol 35:1907–1914
pubmed: 32444926
pmcid: 7502482
McLeod DJ, Ching CB, Sebastiao YV, Greenberg JH, Furth SL, McHugh KM, Becknell B (2019) Common clinical markers predict end-stage renal disease in children with obstructive uropathy. Pediatr Nephrol 34:443–448
pubmed: 30317433
Wu CQ, Blum ES, Patil D, Shin HS, Smith EA (2022) Predicting childhood chronic kidney disease severity in infants with posterior urethral valve: a critical analysis of creatinine values in the first year of life. Pediatr Nephrol 37:1339–1345
pubmed: 34716802
Pulido JE, Furth SL, Zderic SA, Canning DA, Tasian GE (2014) Renal parenchymal area and risk of ESRD in boys with posterior urethral valves. Clin J Am Soc Nephrol 9:499–505
pubmed: 24311709
Ziylan O, Oktar T, Ander H, Korgali E, Rodoplu H, Kocak T (2006) The impact of late presentation of posterior urethral valves on bladder and renal function. J Urol 175:1894–1897 (discussion 1897)
pubmed: 16600793
Ansari MS, Gulia A, Srivastava A, Kapoor R (2010) Risk factors for progression to end-stage renal disease in children with posterior urethral valves. J Pediatr Urol 6:261–264
pubmed: 19833558
Sarhan OM, El-Ghoneimi AA, Helmy TE, Dawaba MS, Ghali AM, el Ibrahiem HI (2011) Posterior urethral valves: multivariate analysis of factors affecting the final renal outcome. J Urol 185:2491–2495
pubmed: 21555022
Matsell DG, Catapang M (2020) Predicting outcomes and improving care in children with congenital kidney anomalies. Pediatr Nephrol 35:1811–1814
pubmed: 32638086
Vasconcelos MA, e Silva ACS, Gomes IR, Carvalho RA, Pinheiro SV, Colosimo EA, Yorgin P, Mak RH, Oliveira EA (2019) A clinical predictive model of chronic kidney disease in children with posterior urethral valves. Pediatr Nephrol 34:283–294
pubmed: 30196383
Ajarmeh S, Er L, Brin G, Djurdjev O, Dionne JM (2012) The effect of a multidisciplinary care clinic on the outcomes in pediatric chronic kidney disease. Pediatr Nephrol 27:1921–1927
pubmed: 22669320
Moreira JM, Bouissou Morais Soares CM, Teixeira AL, Simoes ESAC, Kummer AM (2015) Anxiety, depression, resilience and quality of life in children and adolescents with pre-dialysis chronic kidney disease. Pediatr Nephrol 30:2153–2162
pubmed: 26210984
Kistler BM, Moore LW, Benner D, Biruete A, Boaz M, Brunori G, Chen J, Drechsler C, Guebre-Egziabher F, Hensley MK, Iseki K, Kovesdy CP, Kuhlmann MK, Saxena A, Wee PT, Brown-Tortorici A, Garibotto G, Price SR, Yee-Moon Wang A, Kalantar-Zadeh K (2021) The International Society of Renal Nutrition and Metabolism Commentary on the National Kidney Foundation and Academy of Nutrition and Dietetics KDOQI Clinical Practice Guideline for Nutrition in Chronic Kidney Disease. J Ren Nutr 31:116-120.e1
Collister D, Pyne L, Cunningham J, Donald M, Molnar A, Beaulieu M, Levin A, Brimble KS (2019) Multidisciplinary chronic kidney disease clinic practices: a scoping review. Can J Kidney Health Dis 6:2054358119882667. https://doi.org/10.1177/2054358119882667
doi: 10.1177/2054358119882667
pubmed: 31666978
pmcid: 6801876