Proprioceptors in extraocular muscles.

Golgi tendon organs eye muscle muscle spindles palisade endings proprioception

Journal

Experimental physiology
ISSN: 1469-445X
Titre abrégé: Exp Physiol
Pays: England
ID NLM: 9002940

Informations de publication

Date de publication:
03 Mar 2023
Historique:
received: 22 11 2022
accepted: 07 02 2023
entrez: 4 3 2023
pubmed: 5 3 2023
medline: 5 3 2023
Statut: aheadofprint

Résumé

What is the topic of this review? This review aims to evaluate the literature on proprioceptors and particular nerve specializations (palisade endings) in mammalian extraocular muscles (EOMs) and to reconsider current knowledge of their structure and function. What advances does it highlight? Classical proprioceptors (muscle spindles and Golgi tendon organs) are absent in the EOMs of most mammals. Instead, palisade endings are present in most mammalian EOMs. For many years, palisade endings were considered to be sensory but recent studies show that they combine sensory and motor features. The functional significance of palisade endings is still debated. Proprioception is the sense that lets us perceive the location, movement and action of the body parts. The proprioceptive apparatus includes specialized sense organs (proprioceptors) which are embedded in the skeletal muscles. The eyeballs are moved by six pairs of eye muscles and binocular vision depends on fine-tuned coordination of the optical axes of both eyes. Although experimental studies indicate that the brain has access to eye position information, both classical proprioceptors (muscle spindles and Golgi tendon organ) are absent in the extraocular muscles of most mammalian species. This paradox of monitoring extraocular muscle activity in the absence of typical proprioceptors seemed to be resolved when a particular nerve specialization (the palisade ending) was detected in the extraocular muscles of mammals. In fact, for decades there was consensus that palisade endings were sensory structures that provide eye position information. The sensory function was called into question when recent studies revealed the molecular phenotype and the origin of palisade endings. Today we are faced with the fact that palisade endings exhibit sensory as well as motor features. This review aims to evaluate the literature on extraocular muscle proprioceptors and palisade endings and to reconsider current knowledge of their structure and function.

Identifiants

pubmed: 36869596
doi: 10.1113/EP090765
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Austrian Science Fund (FWF)
ID : P15478
Organisme : Austrian Science Fund (FWF)
ID : P20881
Organisme : Austrian Science Fund (FWF)
ID : P32463-B
Organisme : Materials were also supported by projects
ID : PGC2018-094654-B-100
Organisme : Materials were also supported by projects
ID : PID2021-124300NB-I00
Organisme : MCIN/AEI FEDER 'A way of making Europe' and by project P20_00529 Consejería de Transformación Económica, Industria y Conocimiento, Junta de Andalucía-FEDER. P.M.C. is a 'Margarita Salas' fellow of the Universidad de SevillaMaterials were also supported by projects

Informations de copyright

© 2023 The Authors. Experimental Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

Références

Abuel Atta, A. A., DeSantis, M., & Wong, A. (1997). Encapsulated sensory receptors within intraorbital skeletal muscles of a camel. Anatomical Record, 247(2), 189-198.
Alvarado-Mallart, R. M., & Pincon-Raymond, M. (1979). The palisade endings of cat extraocular muscles: A light and electron microscope study. Tissue & Cell, 11(3), 567-584.
Balslev, D., & Miall, R. C. (2008). Eye position representation in human anterior parietal cortex. Journal of Neuroscience, 28(36), 8968-8972.
Balslev, D., Mitchell, A. G., Faria, P. J. M., Priba, L., & Macfarlane, J. A. (2022). Proprioceptive contribution to oculomotor control in humans. Human Brain Mapping, 43(16), 5081-5090.
Bewick, G. S., & Banks, R. W. (2015). Mechanotransduction in the muscle spindle. Pflugers Archiv: European Journal of Physiology, 467(1), 175-190.
Billig, I., Buisseret Delmas, C., & Buisseret, P. (1997). Identification of nerve endings in cat extraocular muscles. Anatomical Record, 248(4), 566-575.
Blumer, R., Konacki, K. Z., Streicher, J., Hoetzenecker, W., Blumer, M. J., & Lukas, J. R. (2006). Proprioception in the extraocular muscles of mammals and man. Strabismus, 14(2), 101-106.
Blumer, R., Konakci, K. Z., Brugger, P. C., Blumer, M. J., Moser, D., Schoefer, C., Julius-Robert, L., & Streicher, J. (2003). Muscle spindles and golgi tendon organs in bovine calf extraocular muscle studied by means of double-fluorescent labeling, electron microscopy, and three-dimensional reconstruction. Experimental Eye Research, 77(4), 447-462.
Blumer, R., Lukas, J. R., Aigner, M., Bittner, R., Baumgartner, I., & Mayr, R. (1999). Fine structural analysis of extraocular muscle spindles of a two-year-old human infant. Investigative Ophthalmology & Visual Science, 40(1), 55-64.
Blumer, R., Maurer-Gesek, B., Gesslbauer, B., Blumer, M., Pechriggl, E., Davis-Lopez de Carrizosa, M. A., Horn, A. K., May, P. J., Streiche, J., de la Cruz, R. R., & Pastor, A. M. (2016). Palisade endings are a constant feature in the extraocular muscles of frontal-eyed, but not lateral-eyed, animals. Investigative Ophthalmology & Visual Science, 57(2), 320-331.
Blumer, R., Streicher, J., Carrero-Rojas, G., Calvo, P. M., de la Cruz, R. R., & Pastor, A. M. (2020). Palisade endings have an exocytotic machinery but lack acetylcholine receptors and distinct acetylcholinesterase activity. Investigative Ophthalmology & Visual Science, 61(14), 31.
Blumer, R., Streicher, J., Davis-Lopez de Carrizosa, M. A., de la Cruz, R. R., & Pastor, A. M. (2017). Palisade endings of extraocular muscles develop postnatally following different time courses. Investigative Ophthalmology & Visual Science, 58(12), 5105-5121.
Blumer, R., Wasicky, R., Brugger, P. C., Hoetzenecker, W., Wicke, W. L., & Lukas, J. R. (2001). Number, distribution, and morphologic particularities of encapsulated proprioceptors in pig extraocular muscles. Investigative Ophthalmology & Visual Science, 42(13), 3085-3094.
Bohlen, M. O., Warren, S., Mustari, M. J., & May, P. J. (2016). An examination of feline extraocular motoneuron pools as a function of muscle fiber innervation type and muscle layer. Journal of Comparative Neurology, 525(4), 919-935.
Bruenech, J. R., & Ruskell, G. L. (2001). Muscle spindles in extraocular muscles of human infants. Cell, Tissue Organ, 169(4), 388-394.
Buttner Ennever, J. A., Horn, A. K., Scherberger, H., & D'Ascanio, P. (2001). Motoneurons of twitch and nontwitch extraocular muscle fibers in the abducens, trochlear, and oculomotor nuclei of monkeys. Journal of Comparative Neurology, 438(3), 318-335.
Carrero-Rojas, G., Calvo, P. M., Lischka, T., Streicher, J., de la Cruz, R. R., Pastor, A. M., & Blumer, R. (2022). Eye movements but not vision drive the development of palisade endings. Investigative Ophthalmology & Visual Science, 63(11), 15.
Carrero-Rojas, G., Hernandez, R. G., Blumer, R., de la Cruz, R. R., & Pastor, A. M. (2021). MIF versus SIF motoneurons, what are their respective contribution in the oculomotor medial rectus pool? Journal of Neuroscience, 41(47), 9782-9793.
Chen, X. J., Levedakou, E. N., Millen, K. J., Wollmann, R. L., Soliven, B., & Popko, B. (2007). Proprioceptive sensory neuropathy in mice with a mutation in the cytoplasmic dynein heavy chain 1 gene. Journal of Neuroscience, 27(52), 14515-14524.
Dogiel, A. (1906). Die endigungen der sensiblen nerven in den augenmuskeln und deren sehnen beim menschen und den saeugetieren. Archiv für mikroskopische Anatomie, 68(1), 501-526.
Donaldson, I. M. (2000). The functions of the proprioceptors of the eye muscles. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 355(1404), 1685-1754.
Eberhorn, A. C., Horn, A. K., Eberhorn, N., Fischer, P., Boergen, K. P., & Buttner-Ennever, J. A. (2005). Palisade endings in extraocular eye muscles revealed by SNAP-25 immunoreactivity. Journal of Anatomy, 206(3), 307-315.
Fernandez-Chacon, R., Konigstorfer, A., Gerber, S. H., Garcia, J., Matos, M. F., Stevens, C. F., Brose, N., Rizo, J., Rosenmund, C., & Südhof, T. C. (2001). Synaptotagmin i functions as a calcium regulator of release probability. Nature, 410(6824), 41-49.
Gallagher, S., & Cole, J. (1995). Body image and body schema in a deafferented subject. Journal of Mind and Behavior, 16(4), 369-389.
Gauthier, G. M., Nommay, D., & Vercher, J. L. (1990). The role of ocular muscle proprioception in visual localization of targets. Science, 249(4964), 58-61.
Gordon, J., Ghilardi, M. F., & Ghez, C. (1995). Impairments of reaching movements in patients without proprioception. I. Spatial errors. Journal of Neurophysiology, 73(1), 361-372.
Greene, T., & Jampel, R. (1966). Muscle spindles in the extraocular muscles of the macaque. Journal of Comparative Neurology, 126(4), 547-549.
Gregory, J. E., Morgan, D. L., & Proske, U. (1987). Changes in size of the stretch reflex of cat and man attributed to aftereffects in muscle spindles. Journal of Neurophysiology, 58(3), 628-640.
Harker, D. W. (1972). The structure and innervation of sheep superior rectus and levator palpebrae extraocular muscles. II. Muscle spindles. Investigative Ophthalmology & Visual Science, 11(12), 970-979.
Hernandez, R. G., Calvo, P. M., Blumer, R., de la Cruz, R. R., & Pastor, A. M. (2019). Functional diversity of motoneurons in the oculomotor system. PNAS, 116(9), 3837-3846.
Huber, G. C. (1900). Sensory nerve terminations in the tendons of the extrinsic eye-muscles of the cat. Journal of Comparative Neurology, 10(2), 152-158.
Jami, L. (1992). Golgi tendon organs in mammalian skeletal muscle: Functional properties and central actions. Physiological Reviews, 72(3), 623-666.
Konakci, K. Z., Streicher, J., Hoetzenecker, W., Blumer, M. J., Lukas, J. R., & Blumer, R. (2005). Molecular characteristics suggest an effector function of palisade endings in extraocular muscles. Investigative Ophthalmology & Visual Science, 46(1), 155-165.
Konakci, K. Z., Streicher, J., Hoetzenecker, W., Haberl, I., Blumer, M. J., Wieczorek, G., Meingassner, J., Levente Paal, S., Holzinger, D., Lukas, J. R., & Blumer, R. (2005). Palisade endings in extraocular muscles of the monkey are immunoreactive for choline acetyltransferase and vesicular acetylcholine transporter. Investigative Ophthalmology & Visual Science, 46(12), 4548-4554.
Kubota, M. (1988). Ultrastructural observations on muscle spindles in extraocular muscles of pig. Anatomischer Anzeiger, 165(2-3), 205-228.
Lienbacher, K., Mustari, M., Ying, H. S., Buttner-Ennever, J. A., & Horn, A. K. (2011). Do palisade endings in extraocular muscles arise from neurons in the motor nuclei? Investigative Ophthalmology & Visual Science, 52(5), 2510-2519.
Lienbacher, K., Ono, S., Fleuriet, J., Mustari, M., & Horn, A. K. (2018). A subset of palisade endings only in the medial and inferior rectus muscle in monkey contain calretinin. Investigative Ophthalmology & Visual Science, 59(7), 2944-2954.
Lienbacher, K., Sanger, K., Strassburger, S., Ehrt, O., Rudolph, G., Barnerssoi, M., & Horn, A. K. (2019). Extraocular muscles involved in convergence are innervated by an additional set of palisade endings that may differ in their excitability: A human study. Progress in Brain Research, 248, 127-137.
Lukas, J. R., Aigner, M., Blumer, R., Heinzl, H., & Mayr, R. (1994). Number and distribution of neuromuscular spindles in human extraocular muscles. Investigative Ophthalmology & Visual Science, 35(13), 4317-4327.
Lukas, J. R., Blumer, R., Denk, M., Baumgartner, I., Neuhuber, W., & Mayr, R. (2000). Innervated myotendinous cylinders in human extraocular muscles. Investigative Ophthalmology & Visual Science, 41(9), 2422-2431.
Maier, A., DeSantis, M., & Eldred, E. (1974). The occurrence of muscle spindles in extraocular muscles of various vertebrates. Journal of Morphology, 143(4), 397-408.
Manni, E., Bortolami, R., & Desole, C. (1966). Eye muscle proprioception and the semilunar ganglion. Experimental Neurology, 16(2), 226-236.
Mayr, R., Gottschall, J., Gruber, H., & Neuhuber, W. (1975). Internal structure of cat extraocular muscle. Anatomy and Embryology, 148(1), 25-34.
Proske, U. (2015). The role of muscle proprioceptors in human limb position sense: A hypothesis. Journal of Anatomy, 227(2), 178-183.
Richmond, F. J., Johnston, W. S., Baker, R. S., & Steinbach, M. J. (1984). Palisade endings in human extraocular muscles. Investigative Ophthalmology & Visual Science, 25(4), 471-476.
Rungaldier, S., Heiligenbrunner, S., Mayer, R., Hanefl-Krivanek, C., Lipowec, M., Streicher, J., & Blumer, R. (2009). Ultrastructural and molecular biologic comparison of classic proprioceptors and palisade endings in sheep extraocular muscles. Investigative Ophthalmology & Visual Science, 50(12), 5697-5706.
Rungaldier, S., Pomikal, C., Streicher, J., & Blumer, R. (2009). Palisade endings are present in canine extraocular muscles and have a cholinergic phenotype. Neuroscience Letters, 465(3), 199-203.
Ruskell, G. L. (1978). The fine structure of innervated myotendinous cylinders in extraocular muscles of rhesus monkeys. Journal of Neurocytology, 7(6), 693-708.
Ruskell, G. L. (1979). The incidence and variety of golgi tendon organs in extraocular muscles of the rhesus monkey. Journal of Neurocytology, 8(5), 639-653.
Ruskell, G. L. (1989). The fine structure of human extraocular muscle spindles and their potential proprioceptive capacity. Journal of Anatomy, 167, 199-214.
Ruskell, G. L. (1990). Golgi tendon organs in the proximal tendon of sheep extraocular muscles. Anatomical Record, 227(1), 25-31.
Sas, J., & Scháb, R. (1952). Die sogennanten “Palisaden-Endigungen” der augenmuskeln. Acta Morphologica Academiae Scientiarum Hungaricae, 2, 259-266.
Sherrington, C. S. (1907). On the proprio-ceptive system, especially in its reflex aspect. Brain, 29(4), 467-482.
Sherrington, C. S. (1918). Observations on the sensual role of the proprioceptive nerve-supply of the extrinsic ocular muscles. Brain, 41(3-4), 332-343.
Smith, L., Norcliffe-Kaufmann, L., Palma, J. A., Kaufmann, H., & Macefield, V. G. (2020). Elbow proprioception is normal in patients with a congenital absence of functional muscle spindles. The Journal of Physiology, 598(16), 3521-3529.
Steinbach, M. J., Kirshner, E. L., & Arstikaitis, M. J. (1987). Recession vs marginal myotomy surgery for strabismus: Effects on spatial localization. Investigative Ophthalmology & Visual Science, 28(11), 1870-1872.
Steinbach, M. J., & Smith, D. R. (1981). Spatial localization after strabismus surgery: Evidence for inflow. Science, 213(4514), 1407-1409.
Sutton, R. B., Fasshauer, D., Jahn, R., & Brunger, A. T. (1998). Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 a resolution. Nature, 395(6700), 347-353.
Tozer, F. M., & Sherrington, C. S. (1910). Receptors and afferents of the third, forth, and sixth cranial nerves. Proceedings of the Royal Society of London. Series A, 82(557), 450-457.
Wang, X., Zhang, M., Cohen, I. S., & Goldberg, M. E. (2007). The proprioceptive representation of eye position in monkey primary somatosensory cortex. Nature Neuroscience, 10(5), 640-646.
Zhang, Y., Lin, S., Karakatsani, A., Ruegg, M. A., & Kroger, S. (2015). Differential regulation of AChR clustering in the polar and equatorial region of murine muscle spindles. European Journal of Neuroscience, 41(1), 69-78.
Zhang, Y., Wesolowski, M., Karakatsani, A., Witzemann, V., & Kroger, S. (2014). Formation of cholinergic synapse-like specializations at developing murine muscle spindles. Developmental Biology, 393(2), 227-235.
Zimmermann, L., May, P. J., Pastor, A. M., Streicher, J., & Blumer, R. (2011). Evidence that the extraocular motor nuclei innervate monkey palisade endings. Neuroscience Letters, 489(2), 89-93.
Zimmermann, L., Morado-Diaz, C. J., Davis-Lopez de Carrizosa, M. A., de la Cruz, R. R., May, P. J., Streicher, J., Pastor, A. M., & Blumer, R. (2013). Axons giving rise to the palisade endings of feline extraocular muscles display motor features. Journal of Neuroscience, 33(7), 2784-2793.

Auteurs

Roland Blumer (R)

Center of Anatomy and Cell Biology, Division of Anatomy, Medical Image Cluster, Medical University Vienna, Vienna, Austria.

Génova Carrero-Rojas (G)

Center of Anatomy and Cell Biology, Division of Anatomy, Medical Image Cluster, Medical University Vienna, Vienna, Austria.

Paula M Calvo (PM)

Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain.

Johannes Streicher (J)

Department of Anatomy and Biomechanics, Division of Anatomy and Developmental Biology, Karl Landsteiner University of Health Science, Krems an der Donau, Austria.

Rosa R de la Cruz (RR)

Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain.

Angel M Pastor (AM)

Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain.

Classifications MeSH