Morphobiometry of the scleral ossicle rings in Chelonia mydas sea turtles.

aditus orbitae chelonian eye morphology ocular skeleton scleral ossicle

Journal

Veterinary ophthalmology
ISSN: 1463-5224
Titre abrégé: Vet Ophthalmol
Pays: England
ID NLM: 100887377

Informations de publication

Date de publication:
05 Mar 2023
Historique:
revised: 17 02 2023
received: 20 03 2022
accepted: 20 02 2023
entrez: 6 3 2023
pubmed: 7 3 2023
medline: 7 3 2023
Statut: aheadofprint

Résumé

Scleral ossicle rings of reptiles have endoskeletal functions that are not completely understood. Moreover, descriptive reports on the anatomy of those rings are scarce. We tried to make an anatomical description that could contribute to a better understanding of their functions. We quantified, histologically characterized and evaluated the morphobiometry of the scleral ossicles, and measured the aditus orbitae of 25 sea turtle (Chelonia mydas) heads. The aditus orbitae represented about one-third of the total head length and the mean area of the internal opening of each ring was up to 8.37% of the aditus orbitae area. The mean internal diameter of the rings (6.32 mm) was characteristic of scotopic species and the most frequent number of ossicles per ring varied between 11 and 12. Two new classifications were proposed for the ossicle types: plus-Verzahnung (+V) and minus-Verzahnung (-V). The bone tissue revealed a lamellar arrangement typical of compact and resistant bones. The obtained data may be used to support and expand the understanding of functions, animal activity patterns, distinctions between taxa and taphonomic interpretations.

Identifiants

pubmed: 36872572
doi: 10.1111/vop.13082
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023 American College of Veterinary Ophthalmologists.

Références

Narazaki T, Sato K, Abernathy KJ, Marshall GJ, Miyazaki M. Loggerhead turtles (Caretta caretta) use vision to forage on gelatinous prey in mid-water. PLoS One. 2013;8(6):e66043. doi:10.1371/journal.pone.0066043
Rhodin AGJ, Stanford CB, Dijk PPV, et al. Global conservation status of turtles and tortoises (order Testudines). Chelonian Conserv Biol. 2018;17(2):135-161. doi:10.2744/CCB-1348.1
Koolstra FJ, Küchelmann HC, Ҫakirlar C. Comparative osteology and osteometry of the coracoideum, humerus, and femur of the green turtle (Chelonia mydas) and the loggerhead turtle (Caretta caretta). Int J Osteoarchaeol. 2019;29:683-695. doi:10.1002/oa.2761
Seminoff JA. Southwest Fisheries Science Center, US e.T4615A11037468The IUCN red list of threatened species. Chelonia mydas; 2004. 10.2305/IUCN.UK.2004.RLTS.T4615A11037468.en Accessed August 19, 2021.
Almeida AP, Moreira LMP, Bruno SC, et al. Green turtle nesting on Trindade Island, Brazil: abundance, trends, and biometrics. Endangered Spec Res. 2011;14:193-201. doi:10.3354/esr00357
Palumbo C, Cavani F, Sena P, Benincasa M, Ferretti M. Osteocyte apoptosis and absence of bone remodeling in human auditory ossicles and scleral ossicles of lower vertebrates: a mere coincidence or linked processes? Calcified Tiss Int. 2012;90:211-218. doi:10.1007/s00223-012-9569-6
Franz-Odendaal TA. Skeletons of the eye: an evolutionary and developmental perspective. Anat Rec. 2020;303:100-109. doi:10.1002/ar.24043
Zhang G, Boyle DL, Zhang Y, Rogers AR, Conrad GW. Development and mineralization of embryonic avian scleral ossicles. Mol Vis. 2012;18:348-361. http://www.molvis.org/molvis/v18/a38
Lyon A, Powers AK, Gross JB, O'Quin KE. Two - three loci control scleral ossicle formation via epistasis in the cavefish Astyanax mexicanus. PLoS One. 2017;12(2):e0171061. doi:10.1371/journal.pone.0171061
Yamashita M, Konishi T, Sato T. Sclerotic rings in mosasaurs (Squamata: Mosasauridae): structures and taxonomic diversity. PLoS One. 2015;10(2):e0117079. doi:10.1371/journal.pone.0117079
Mass AM, Supin AY. Adaptive features of aquatic mammals' eye. Anat Rec (Hoboken). 2007;290(6):701-715. doi:10.1002/ar.20529 PMID: 17516421.
Atkins JB, Franz-Odendaal TA. The sclerotic ring of squamates: an evo-devo-eco perspective. J Anat. 2016;229(4):503-513. doi:10.1111/joa.12498
Vieira LG, Santos ALQ, Lima FC. Ontogeny of scleral ossicles of giant Amazon River turtles Podocnemis expansa Schweigger, 1812 (Testudines, Podocnemididae). Braz J Morphol Sci. 2007;24(4):220-223. http://www.jms.periodikos.com.br/article/587cb46a7f8c9d0d058b466c
Avens L, Goshe LR, Zug GR, Balazs GH, Benson SR, Harris H. Regional comparison of leatherback sea turtle maturation attributes and reproductive longevity. Mar Biol. 2020;167(4):12. doi:10.1007/s00227-019-3617-y
Muramoto C, Cardoso-Brito V, Raposo AC, Pires TT, Oriá AP. Ocular ultrasonography of sea turtles. Acta Vet Scand. 2020;62(1):52. doi:10.1186/s13028-020-00551-1
Sarma K. Morphological and craniometrical studies on the skull of kagani goat (Capra hircus) of Jammu region. Int J Morphol. 2006;24(3):449-455. doi:10.4067/S0717-95022006000400025
Dawson AB. A note on the staining of the skeleton of cleared specimens with alizarin red S. Stain Technol. 1926;1(4):123-124. doi:10.3109/10520292609115636
Prophet EB, Mills B, Arrington JB, Sobin LH. Laboratory Methods in Histotechnology. Armed Forces Institute of Pathology; 1992.
Fernández MS, Archuby FM, Talevi M, Ebner R. Ichthyosaurian eyes: paleobiological information content in the sclerotic ring of Caypullisaurus (Ichthyosauria, Ophthalmosauria). J Vertebr Paleontol. 2005;25:330-337. doi:10.1671/0272-4634
Oliveira LR, Hoffman JI, Hingst-Zaher E, et al. Morphological and genetic evidence for two evolutionarily significant units (ESUs) in the south American fur seal. Arctocephalus Australis Conserv Genet. 2008;9:1451-1466. doi:10.1007/s10592-007-9473-1
Schmitz L, Motani R. Nocturnality in dinosaurs inferred from scleral ring and orbit morphology. Science. 2011;332(6030):705-708. doi:10.1126/science.1200043
Arbour VM, Currie PJ. Analyzing taphonomic deformation of ankylosaur skulls using retrodeformation and finite element analysis. PLoS One. 2012;7(6):e39323. doi:10.1371/journal.pone.0039323
Lantyer-Araújo NL, Silva DN, Estrela-Lima A, et al. Anatomical, histological and computed tomography comparisons of the eye and adnexa of crab-eating fox (Cerdocyon thous) to domestic dogs. PLoS One. 2019;14(10):e0224245. doi:10.1371/journal.pone.0224245
Ollonen J, Silva FO, Mahlow K, Di-Poï N. Skull development, ossification pattern, and adult shape in the emerging lizard model organism Pogona vitticeps: a comparative analysis with other squamates. Front Physiol. 2018;9(28):278. doi:10.3389/fphys.2018.00278
Hall MI. The anatomical relationships between the avian eye, orbit and sclerotic ring: implications for inferring activity patterns in extinct birds. J Anat. 2008;212:781-794. doi:10.1111/j.1469-7580.2008.00897.x
Carvalho CM, Rodarte-Almeida ACV, Santana MIS, Galera PD. Avian ophthalmic peculiarities. Ciência Rural. 2018;48(12):e20170904. doi:10.1590/0103-8478cr20170904
Chan W, Madge SN, Senaratne T, et al. Exophthalmometric values and their biometric correlates: the Kandy eye study. Clin Experiment Ophthalmol. 2009;37:496-502. doi:10.1111/j.1442-9071.2009.02087.x
Baalen MV, Mason S, Foy M, et al. Evidence Based Medicine in Space Flight: Evaluation of Inflight Vision Data for Operational Decision-Making. NASA Technical Reports Server/Patent Number JSC-CN-32328; Published 2015. https://ntrs.nasa.gov/citations/20140017001. Accessed June 9, 2021.
Zamana RR, Gattamorta MA, Cruz Ochoa PF, et al. High occurrence of Chelonid Alphaherpesvirus 5 (ChHV5) in Green Sea turtles Chelonia mydas with and without Fibropapillomatosis in feeding areas of the São Paulo coast, Brazil. J Aquat Anim Health. 2021;33(4):252-263. doi:10.1002/aah.10142
Vilca FZ, Rossi S, de Olinda RA, et al. Concentrations of polycyclic aromatic hydrocarbons in liver samples of juvenile green sea turtles from Brazil: can these compounds play a role in the development of fibropapillomatosis? Mar Pollut Bull. 2018;130:215-222. doi:10.1016/j.marpolbul.2018.03.021
Lima FC, Vieira LG, Santos ALQ, et al. Anatomy of the scleral ossicles in Brazilian birds. Braz J Morphol Sci. 2009;26(3-4):165-169. http://www.jms.periodikos.com.br/article/587cb4907f8c9d0d058b474a/pdf/
Guerra-Fuentes RA, Daza JD, Bauer A. The embryology of the retinal pigmented epithelium in dwarf geckos (Gekkota: Sphaerodactylinae): a unique developmental pattern. BMC Dev Biol. 2014;14:29. doi:10.1186/1471-213X-14-29
Franz-Odendaal TA, Vickaryous MK. Skeletal elements in the vertebrate eye and adnexa: morphological and developmental perspectives. Dev Dyn. 2006;235:1244-1255. doi:10.1002/dvdy.20718
Kumar S, Franz-Odendaal TA. Analysis of the FGFR spatiotemporal expression pattern within the chicken scleral ossicle system. Gene Expr Patterns. 2018;30:7-13. doi:10.1016/j.gep.2018.08.004
Franz-Odendaal TA, Hall BK. Skeletal elements within teleost eyes and a discussion of their homology. J Morphol. 2006;267:1326-1337. doi:10.1002/jmor.10479
Fischer O, Schoenemann B. Why are bones in vertebrate eyes? Morphology, development and function of scleral ossicles in vertebrate eyes - a comparative study. J Anat Physiol Stud. 2019;3(2):1-26. http://www.sciaeon.org/articles/Why-are-Bones-in-Vertebrate-Eyes-Morphology-Development-and-Function-of-Scleral-Ossicles-in-Vertebrate-eyes-a-Comparative-Study.pdf
Franz-Odendaal TA. Intramembranous ossification of scleral ossicles in Chelydra serpentina. Fortschr Zool. 2006;109(1):75-81. doi:10.1016/j.zool.2005.10.001
Queiroz K. The scleral ossicles of Sceloporine iguanids: a reexamination with comments on their phylogenetic significance. Herpetologica. 1982;38(2):302-311.
Jabalee J, Hillier S, Franz-Odendaal TA. An investigation of cellular dynamics during the development of intramembranous bones: the scleral ossicles. J Anat. 2013;223(4):311-320. doi:10.1111/joa.12095
Antczak M, Bodzioch A. Ornamentation of dermal bones of Metoposaurus krasiejowensis and its ecological implications. PeerJ. 2018;6:e5267. doi:10.7717/peerj.5267
Sun S, Henriksen K, Karsdal MA, et al. Collagen type III and VI turnover in response to long-term immobilization. PLoS One. 2015;10(2):e0144525. doi:10.1371/journal.pone.0144525
Hays GC, Hochscheid S, Broderick AC, Godley BJ, Metcalfe JD. Diving behaviour of green turtles: dive depth, dive duration and activity levels. Mar Ecol Prog Ser. 2000;208:297-298. doi:10.3354/meps208297
Gumpenberger M, Kolm G. Ultrasonographic and computed tomographic examinations of the avian eye: physiologic appearance, pathologic findings, and comparative biometric measurement. Vet Radiol Ultrasound. 2006;47(5):492-502. doi:10.1111/j.1740-8261.2006.00168.x
Squarzoni R, Perlmann E, Antunes A, Milanelo L, Barros PSM. Ultrasonographic aspects and biometry of striped owl's eyes (Rhinoptynx clamator). Vet Ophthalmol. 2010;13:86-90. doi:10.1111/j.1463-5224.2010.00819.x
Li Y, Shi Q, Liu Y, et al. Fourier-domain ultrasonic imaging of cortical bone based on velocity distribution inversion. IEEE Trans Ultrason Ferroelectr Freq Control. 2021;68(8):2619-2634. doi:10.1109/TUFFC.2021.3072657
Apruzzese A, Rodriguez A, González F, López I, Suárez L, González-Alonso-Alegre E. Ocular ultrasonography and biometry in the cinereous vulture (Aegypius monachus). J Avian Med Surg. 2018;32(4):307-313. doi:10.1647/2016-239
Andrade SB, Araujo NLLC, Raposo ACS, Muramoto C, Oriá AP. Morphometric descriptive report of scleral ossicle rings, by ultrasound and computed tomography, in three Testudines specimens. Cienc Rural. 2023;53(3):e20210423. doi:10.1590/0103-8478cr20210423

Auteurs

Stelamares Boyda-Andrade (S)

School of Veterinary Medicine, Federal University from the West of Bahia, UFOB, Salvador, Bahia, Brazil.
School of Veterinary Medicine and Zootechny, Federal University of Bahia, UFBA, Salvador, Bahia, Brazil.

Danielle Nascimento Silva (DN)

School of Veterinary Medicine and Zootechny, Federal University of Bahia, UFBA, Salvador, Bahia, Brazil.

Ana Cláudia Raposo (AC)

School of Veterinary Medicine and Zootechny, Federal University of Bahia, UFBA, Salvador, Bahia, Brazil.

Alessandra Estrela-Lima (A)

School of Veterinary Medicine and Zootechny, Federal University of Bahia, UFBA, Salvador, Bahia, Brazil.

Arianne P Oriá (AP)

School of Veterinary Medicine and Zootechny, Federal University of Bahia, UFBA, Salvador, Bahia, Brazil.

Classifications MeSH