Development of running is not related to time since onset of independent walking, a longitudinal case study.
children
clustering
development
kinematics
muscle synergies
neuromuscular control
running
Journal
Frontiers in human neuroscience
ISSN: 1662-5161
Titre abrégé: Front Hum Neurosci
Pays: Switzerland
ID NLM: 101477954
Informations de publication
Date de publication:
2023
2023
Historique:
received:
18
11
2022
accepted:
23
01
2023
entrez:
6
3
2023
pubmed:
7
3
2023
medline:
7
3
2023
Statut:
epublish
Résumé
Children start to run after they master walking. How running develops, however, is largely unknown. We assessed the maturity of running pattern in two very young, typically developing children in a longitudinal design spanning about three years. Leg and trunk 3D kinematics and electromyography collected in six recording sessions, with more than a hundred strides each, entered our analysis. We recorded walking during the first session (the session of the first independent steps of the two toddlers at the age of 11.9 and 10.6 months) and fast walking or running for the subsequent sessions. More than 100 kinematic and neuromuscular parameters were determined for each session and stride. The equivalent data of five young adults served to define mature running. After dimensionality reduction using principal component analysis, hierarchical cluster analysis based on the average pairwise correlation distance to the adult running cluster served as a measure for maturity of the running pattern. Both children developed running. Yet, in one of them the running pattern did not reach maturity whereas in the other it did. As expected, mature running appeared in later sessions (>13 months after the onset of independent walking). Interestingly, mature running alternated with episodes of immature running within sessions. Our clustering approach separated them. An additional analysis of the accompanying muscle synergies revealed that the participant who did not reach mature running had more differences in muscle contraction when compared to adults than the other. One may speculate that this difference in muscle activity may have caused the difference in running pattern.
Identifiants
pubmed: 36875237
doi: 10.3389/fnhum.2023.1101432
pmc: PMC9978154
doi:
Types de publication
Journal Article
Langues
eng
Pagination
1101432Informations de copyright
Copyright © 2023 Bach, Zandvoort, Cappellini, Ivanenko, Lacquaniti, Daffertshofer and Dominici.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Front Bioeng Biotechnol. 2020 Oct 23;8:581619
pubmed: 33195143
J Neurophysiol. 2015 Nov;114(5):2867-82
pubmed: 26378199
Gait Posture. 2006 Nov;24(3):270-9
pubmed: 16314099
iScience. 2020 Jan 24;23(1):100796
pubmed: 31962235
J Neurophysiol. 2011 Sep;106(3):1525-36
pubmed: 21697441
Front Hum Neurosci. 2014 Jun 16;8:423
pubmed: 24982628
PLoS One. 2016 Feb 01;11(2):e0148124
pubmed: 26828941
J Neurophysiol. 2010 Mar;103(3):1673-84
pubmed: 20089810
J Neuroeng Rehabil. 2019 Mar 29;16(1):46
pubmed: 30925882
Sci Rep. 2018 Feb 9;8(1):2740
pubmed: 29426876
J Neurophysiol. 2005 Jul;94(1):754-63
pubmed: 15728772
Exp Brain Res. 2001 Apr;137(3-4):455-66
pubmed: 11355390
Front Bioeng Biotechnol. 2020 May 19;8:473
pubmed: 32509753
Front Hum Neurosci. 2021 May 10;15:637157
pubmed: 34040508
J Neurophysiol. 2006 Jun;95(6):3426-37
pubmed: 16554517
Nat Commun. 2020 Aug 31;11(1):4356
pubmed: 32868777
Nat Neurosci. 2009 Oct;12(10):1333-42
pubmed: 19767747
Science. 2011 Nov 18;334(6058):997-9
pubmed: 22096202
J Neurosci. 2005 Jul 6;25(27):6419-34
pubmed: 16000633
Sci Transl Med. 2015 Aug 26;7(302):302ra134
pubmed: 26311729
J Neurophysiol. 2014 Dec 1;112(11):2810-21
pubmed: 25185815
J Biomech. 2010 May 28;43(8):1573-9
pubmed: 20206934
Front Physiol. 2016 Oct 25;7:478
pubmed: 27826251
Early Hum Dev. 2013 Sep;89(9):655-9
pubmed: 23701748
J Exp Biol. 1997 Feb;200(Pt 4):821-6
pubmed: 9076966
J Exp Biol. 2004 Oct;207(Pt 21):3797-810
pubmed: 15371487
J Biomech. 1992 Feb;25(2):145-8
pubmed: 1733990
Commun Biol. 2022 Nov 16;5(1):1256
pubmed: 36385628
Pflugers Arch. 1998 Aug;436(3):343-56
pubmed: 9644215
Dev Med Child Neurol. 2022 Apr;64(4):462-468
pubmed: 34614213
Hum Mov Sci. 2015 Dec;44:91-101
pubmed: 26340274
iScience. 2022 Sep 28;25(10):105229
pubmed: 36267917
Gait Posture. 2015 Feb;41(2):613-8
pubmed: 25662042
Exerc Sport Sci Rev. 2007 Apr;35(2):67-73
pubmed: 17417053
J Physiol. 1996 Aug 1;494 ( Pt 3):863-79
pubmed: 8865081
J Electromyogr Kinesiol. 2012 Jun;22(3):485-93
pubmed: 22296869
IEEE Trans Neural Netw. 2005 May;16(3):645-78
pubmed: 15940994
Source Code Biol Med. 2013 Apr 16;8(1):10
pubmed: 23591137
Neuroimage. 2019 Oct 1;199:30-37
pubmed: 31121297
Sensors (Basel). 2021 May 11;21(10):
pubmed: 34064615
J Electromyogr Kinesiol. 2020 Aug;53:102438
pubmed: 32569878
Eur J Appl Physiol. 2021 Apr;121(4):1073-1085
pubmed: 33439307
J Neurosci. 2007 Oct 10;27(41):11149-61
pubmed: 17928457
J Bone Joint Surg Am. 1980 Apr;62(3):336-53
pubmed: 7364807
Nat Med. 2012 Jul;18(7):1142-7
pubmed: 22653117
Neuroscientist. 2006 Aug;12(4):339-48
pubmed: 16840710
Exp Brain Res. 1985;57(3):480-93
pubmed: 3979491
Front Hum Neurosci. 2021 Jun 03;15:659415
pubmed: 34149378
Biol Open. 2013 Aug 19;2(10):1032-6
pubmed: 24167713
PLoS One. 2016 Apr 11;11(4):e0153307
pubmed: 27064978
Front Physiol. 2020 Jul 24;11:751
pubmed: 32792967
Children (Basel). 2022 Mar 13;9(3):
pubmed: 35327778
J Neurophysiol. 2002 Mar;87(3):1542-53
pubmed: 11877525
Front Netw Physiol. 2022 Mar 24;2:844607
pubmed: 36926099
Front Physiol. 2018 Oct 29;9:1509
pubmed: 30420812
J Neurophysiol. 2007 Apr;97(4):2790-801
pubmed: 17251371