Robust 3D modeling reveals spatiosyntenic properties of animal genomes.
Evolutionary biology
Genomics
Molecular biology
Journal
iScience
ISSN: 2589-0042
Titre abrégé: iScience
Pays: United States
ID NLM: 101724038
Informations de publication
Date de publication:
17 Mar 2023
17 Mar 2023
Historique:
received:
19
07
2022
revised:
18
11
2022
accepted:
31
01
2023
entrez:
6
3
2023
pubmed:
7
3
2023
medline:
7
3
2023
Statut:
epublish
Résumé
Animal genomes are organized into chromosomes that are remarkably conserved in their gene content, forming distinct evolutionary units (synteny). Using versatile chromosomal modeling, we infer three-dimensional topology of genomes from representative clades spanning the earliest animal diversification. We apply a partitioning approach using interaction spheres to compensate for varying quality of topological data. Using comparative genomics approaches, we test whether syntenic signal at gene pair, local, and whole chromosomal scale is reflected in the reconstructed spatial organization. We identify evolutionarily conserved three-dimensional networks at all syntenic scales revealing novel evolutionarily maintained interactors associated with known conserved local gene linkages (such as hox). We thus present evidence for evolutionary constraints that are associated with three-, rather than just two-, dimensional animal genome organization, which we term spatiosynteny. As more accurate topological data become available, together with validation approaches, spatiosynteny may become relevant in understanding the functionality behind the observed conservation of animal chromosomes.
Identifiants
pubmed: 36876129
doi: 10.1016/j.isci.2023.106136
pii: S2589-0042(23)00213-4
pmc: PMC9976460
doi:
Types de publication
Journal Article
Langues
eng
Pagination
106136Subventions
Organisme : Austrian Science Fund FWF
ID : P 32190
Pays : Austria
Informations de copyright
© 2023 The Author(s).
Déclaration de conflit d'intérêts
The authors declare no competing interests.
Références
Science. 2021 May 28;372(6545):984-989
pubmed: 34045355
Genetics. 2018 Sep;210(1):3-13
pubmed: 30166445
Cell. 2011 Nov 23;147(5):1132-45
pubmed: 22118467
BMC Genomics. 2018 Feb 23;19(1):161
pubmed: 29471801
Genome Res. 2012 Dec;22(12):2356-67
pubmed: 22722344
Genome Biol. 2019 Nov 14;20(1):238
pubmed: 31727128
Nature. 2013 Jan 24;493(7433):526-31
pubmed: 23254933
Nucleic Acids Res. 2017 Feb 17;45(3):1049-1058
pubmed: 28180292
Genome Biol. 2015 Dec 01;16:259
pubmed: 26619908
Nat Commun. 2020 Jun 19;11(1):3051
pubmed: 32561724
Genome Res. 2007 May;17(5):545-55
pubmed: 17387144
Gigascience. 2019 Oct 1;8(10):
pubmed: 31634388
Mol Biol Evol. 2013 Apr;30(4):772-80
pubmed: 23329690
Nature. 2017 Apr 6;544(7648):59-64
pubmed: 28289288
Nature. 2008 Jun 19;453(7198):1064-71
pubmed: 18563158
Gigascience. 2021 Feb 16;10(2):
pubmed: 33590861
Sci Adv. 2022 Feb 4;8(5):eabi5884
pubmed: 35108053
Proc Natl Acad Sci U S A. 2020 Apr 7;117(14):7845-7850
pubmed: 32205432
Genome Res. 2014 Jun;24(6):999-1011
pubmed: 24501021
Trends Genet. 2008 Jun;24(6):259-62
pubmed: 18472178
Nucleic Acids Res. 2011 Jan;39(Database issue):D19-21
pubmed: 21062823
Nat Protoc. 2018 May;13(5):1137-1152
pubmed: 29700484
PLoS Comput Biol. 2011 Oct;7(10):e1002195
pubmed: 22039361
Nat Methods. 2012 Mar 04;9(4):357-9
pubmed: 22388286
Evol Dev. 2011 Nov-Dec;13(6):567-8
pubmed: 23016940
Nat Ecol Evol. 2019 Sep;3(9):1289-1293
pubmed: 31383947
Nat Methods. 2015 Jan;12(1):59-60
pubmed: 25402007
Bioinformatics. 2009 Aug 1;25(15):1972-3
pubmed: 19505945
Nat Genet. 2016 Mar;48(3):336-41
pubmed: 26829752
Nat Ecol Evol. 2020 Jun;4(6):820-830
pubmed: 32313176
PLoS One. 2010 Mar 10;5(3):e9490
pubmed: 20224823
Gigascience. 2019 Jul 1;8(7):
pubmed: 31289832
Nucleus. 2018 Jan 1;9(1):190-201
pubmed: 29431585
Development. 2007 Jul;134(14):2549-60
pubmed: 17553908
Nucleic Acids Res. 2021 Feb 22;49(3):1294-1312
pubmed: 33434270