Red Emissive Double Aza[7]helicenes with Antiaromaticity / Aromaticity Switching via the Redox-Induced Radical Cation and Dication Species.

Antiaromaticity Aza[7]Helicene Chirality Radical Cation Red Emission

Journal

Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543

Informations de publication

Date de publication:
24 Apr 2023
Historique:
received: 09 02 2023
medline: 7 3 2023
pubmed: 7 3 2023
entrez: 6 3 2023
Statut: ppublish

Résumé

We herein present the synthetic approach to a new antiaromatic double aza[7]helicene C that features NN-embedded polycyclic aromatic hydrocarbons (PAHs). This heteroatom-doped helicene showed a rarely obtained long-wavelength emission and far-red circularly polarized luminescence (CPL) in the solid state. These optical and chiroptical properties could be ascribed to both the NN-PAH core structure and the further extension through angular ring fusions. Such a unique electronic structure also culminated in facile chemical oxidations of neutral C to the positively charged chiral radical (C⋅

Identifiants

pubmed: 36877097
doi: 10.1002/anie.202302019
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e202302019

Subventions

Organisme : National Natural Science Foundation of China
ID : 22271013
Organisme : National Natural Science Foundation of China
ID : 21772012

Informations de copyright

© 2023 Wiley-VCH GmbH.

Références

 
L. Chen, Y. Hernandez, X. Feng, K. Müllen, Angew. Chem. Int. Ed. 2012, 51, 7640-7654;
Angew. Chem. 2012, 124, 7758-7773;
R. K. Dubey, M. Melle-Franco, A. Mateo-Alonso, J. Am. Chem. Soc. 2022, 144, 2765-2774;
Y. Guo, S. Ding, N. Zhang, Z. Xu, S. Wu, J. Hu, Q. Xiang, Z.-Y. Li, X. Chen, S. Sato, J. Wu, Z. Sun, J. Am. Chem. Soc. 2022, 144, 2095-2100;
S. Mishra, D. Beyer, K. Eimre, J. Liu, R. Berger, O. Gröning, C. A. Pignedoli, K. Müllen, R. Fasel, X. Feng, P. Ruffieux, J. Am. Chem. Soc. 2019, 141, 10621-10625;
X. Yang, S. M. Elbert, F. Rominger, M. Mastalerz, J. Am. Chem. Soc. 2022, 144, 9883-9892;
J.-K. Li, X.-Y. Chen, W.-L. Zhao, Y.-L. Guo, Y. Zhang, X.-C. Wang, A. C. H. Sue, X.-Y. Cao, M. Li, C.-F. Chen, X.-Y. Wang, Angew. Chem. Int. Ed. 2023, 62, e202215367;
Angew. Chem. 2023, 135, e202215367.
 
J. Liu, X. Feng, Angew. Chem. Int. Ed. 2020, 59, 23386-23401;
Angew. Chem. 2020, 132, 23591-23607;
A. Narita, X.-Y. Wang, X. Feng, K. Müllen, Chem. Soc. Rev. 2015, 44, 6616-6643;
S. R. Peurifoy, T. J. Sisto, F. Ng, M. L. Steigerwald, R. Chen, C. Nuckolls, Chem. Rec. 2019, 19, 1050-1061;
Y. Yano, N. Mitoma, H. Ito, K. Itami, J. Org. Chem. 2020, 85, 4-33;
W. Zeng, J. Wu, Chem 2021, 7, 358-386.
 
M. Gingras, Chem. Soc. Rev. 2013, 42, 1051-1095;
M. Gingras, Chem. Soc. Rev. 2013, 42, 968-1006;
M. Gingras, G. Félix, R. Peresutti, Chem. Soc. Rev. 2013, 42, 1007-1050;
G. R. Kiel, S. C. Patel, P. W. Smith, D. S. Levine, T. D. Tilley, J. Am. Chem. Soc. 2017, 139, 18456-18459;
R. Rodríguez, C. Naranjo, A. Kumar, P. Matozzo, T. K. Das, Q. Zhu, N. Vanthuyne, R. Gómez, R. Naaman, L. Sánchez, J. Crassous, J. Am. Chem. Soc. 2022, 144, 7709-7719;
T. R. Schulte, J. J. Holstein, G. H. Clever, Angew. Chem. Int. Ed. 2019, 58, 5562-5566;
Angew. Chem. 2019, 131, 5618-5622.
 
T. Mori, Chem. Rev. 2021, 121, 2373-2412;
Y. Yang, R. C. da Costa, M. J. Fuchter, A. J. Campbell, Nat. Photonics 2013, 7, 634-638;
W.-L. Zhao, M. Li, H.-Y. Lu, C.-F. Chen, Chem. Commun. 2019, 55, 13793-13803;
M. Cei, L. Di Bari, F. Zinna, Chirality 2023, 35, 192-210.
 
J. R. Brandt, X. Wang, Y. Yang, A. J. Campbell, M. J. Fuchter, J. Am. Chem. Soc. 2016, 138, 9743-9746;
K. Dhbaibi, L. Abella, S. Meunier-Della-Gatta, T. Roisnel, N. Vanthuyne, B. Jamoussi, G. Pieters, B. Racine, E. Quesnel, J. Autschbach, J. Crassous, L. Favereau, Chem. Sci. 2021, 12, 5522-5533.
X. Xiao, S. K. Pedersen, D. Aranda, J. Yang, R. A. Wiscons, M. Pittelkow, M. L. Steigerwald, F. Santoro, N. J. Schuster, C. Nuckolls, J. Am. Chem. Soc. 2021, 143, 983-991.
 
C. Li, G. Chen, Y. Zhang, F. Wu, Q. Wang, J. Am. Chem. Soc. 2020, 142, 14789-14804;
L. Yuan, W. Lin, K. Zheng, L. He, W. Huang, Chem. Soc. Rev. 2013, 42, 622-661.
 
J.-F. Chen, G. Tian, K. Liu, N. Zhang, N. Wang, X. Yin, P. Chen, Org. Lett. 2022, 24, 1935-1940;
J. Ding, S. Dong, M. Zhang, F. Li, J. Mater. Chem. C 2022, 10, 14116-14121;
Y. Hu, G. M. Paternò, X.-Y. Wang, X.-C. Wang, M. Guizzardi, Q. Chen, D. Schollmeyer, X.-Y. Cao, G. Cerullo, F. Scotognella, K. Müllen, A. Narita, J. Am. Chem. Soc. 2019, 141, 12797-12803;
W. Jiang, Z. Wang, J. Am. Chem. Soc. 2022, 144, 14976-14991;
B. Mahlmeister, M. Mahl, H. Reichelt, K. Shoyama, M. Stolte, F. Würthner, J. Am. Chem. Soc. 2022, 144, 10507-10514;
P. Mayorga Burrezo, V. G. Jiménez, D. Blasi, I. Ratera, A. G. Campaña, J. Veciana, Angew. Chem. Int. Ed. 2019, 58, 16282-16288;
Angew. Chem. 2019, 131, 16428-16434;
S. Míguez-Lago, I. F. A. Mariz, M. A. Medel, J. M. Cuerva, E. Maçôas, C. M. Cruz, A. G. Campaña, Chem. Sci. 2022, 13, 10267-10272;
M. Milton, N. J. Schuster, D. W. Paley, R. Hernández Sánchez, F. Ng, M. L. Steigerwald, C. Nuckolls, Chem. Sci. 2019, 10, 1029-1034;
S. H. Pun, K. M. Cheung, D. Yang, H. Chen, Y. Wang, S. V. Kershaw, Q. Miao, Angew. Chem. Int. Ed. 2022, 61, e202113203;
Angew. Chem. 2022, 134, e202113203;
Y.-F. Wu, S.-W. Ying, L.-Y. Su, J.-J. Du, L. Zhang, B.-W. Chen, H.-R. Tian, H. Xu, M.-L. Zhang, X. Yan, Q. Zhang, S.-Y. Xie, L.-S. Zheng, J. Am. Chem. Soc. 2022, 144, 10736-10742.
 
A. Borissov, Y. K. Maurya, L. Moshniaha, W.-S. Wong, M. Żyła-Karwowska, M. Stępień, Chem. Rev. 2022, 122, 565-788;
J. Full, S. P. Panchal, J. Götz, A.-M. Krause, A. Nowak-Król, Angew. Chem. Int. Ed. 2021, 60, 4350-4357;
Angew. Chem. 2021, 133, 4396-4403;
J. He, F. Rauch, M. Finze, T. B. Marder, Chem. Sci. 2021, 12, 128-147;
M. Hirai, N. Tanaka, M. Sakai, S. Yamaguchi, Chem. Rev. 2019, 119, 8291-8331;
Z. Huang, S. Wang, R. D. Dewhurst, N. V. Ignat′ev, M. Finze, H. Braunschweig, Angew. Chem. Int. Ed. 2020, 59, 8800-8816;
Angew. Chem. 2020, 132, 8882-8900;
L. Ji, S. Griesbeck, T. B. Marder, Chem. Sci. 2017, 8, 846-863;
M. Stępień, E. Gońka, M. Żyła, N. Sprutta, Chem. Rev. 2017, 117, 3479-3716;
X.-Y. Wang, X. Yao, A. Narita, K. Müllen, Acc. Chem. Res. 2019, 52, 2491-2505;
X. Zhang, F. Rauch, J. Niedens, R. B. da Silva, A. Friedrich, A. Nowak-Król, S. J. Garden, T. B. Marder, J. Am. Chem. Soc. 2022, 144, 22316-22324.
 
K. Dhbaibi, L. Favereau, J. Crassous, Chem. Rev. 2019, 119, 8846-8953;
T. Fujikawa, Y. Segawa, K. Itami, J. Am. Chem. Soc. 2016, 138, 3587-3595;
K. Xu, Y. Fu, Y. Zhou, F. Hennersdorf, P. Machata, I. Vincon, J. J. Weigand, A. A. Popov, R. Berger, X. Feng, Angew. Chem. Int. Ed. 2017, 56, 15876-15881;
Angew. Chem. 2017, 129, 16092-16097.
 
J. Dosso, B. Bartolomei, N. Demitri, F. P. Cossío, M. Prato, J. Am. Chem. Soc. 2022, 144, 7295-7301;
S. Kasemthaveechok, L. Abella, M. Jean, M. Cordier, T. Roisnel, N. Vanthuyne, T. Guizouarn, O. Cador, J. Autschbach, J. Crassous, L. Favereau, J. Am. Chem. Soc. 2020, 142, 20409-20418;
S. Kasemthaveechok, L. Abella, M. Jean, M. Cordier, N. Vanthuyne, T. Guizouarn, O. Cador, J. Autschbach, J. Crassous, L. Favereau, J. Am. Chem. Soc. 2022, 144, 7253-7263;
H. Sato, R. Suizu, T. Kato, A. Yagi, Y. Segawa, K. Awaga, K. Itami, Chem. Sci. 2022, 13, 9947-9951;
C. Shu, H. Zhang, A. Olankitwanit, S. Rajca, A. Rajca, J. Am. Chem. Soc. 2019, 141, 17287-17294;
H. Wei, X. Hou, T. Xu, Y. Zou, G. Li, S. Wu, Y. Geng, J. Wu, Angew. Chem. Int. Ed. 2022, 61, e202210386;
Angew. Chem. 2022, 134, e202210386;
S. F. Wu, Y. Ni, Y. Han, X. D. Hou, C. Y. Wang, W. P. Hu, J. Wu, Angew. Chem. Int. Ed. 2022, 61, e202115571;
Angew. Chem. 2022, 134, e202115571;
S. F. Wu, Y. Ni, Y. Han, S. Xin, X. D. Hou, J. Zhu, Z. T. Li, J. Wu, J. Am. Chem. Soc. 2022, 144, 23158-23167.
 
M. Abe, Chem. Rev. 2013, 113, 7011-7088;
I. Ratera, J. Veciana, Chem. Soc. Rev. 2012, 41, 303-349;
Q. El Bakouri, D. W. Szczepanik, K. Jorner, R. Ayub, P. Bultinck, M. Solà, H. Ottosson, J. Am. Chem. Soc. 2022, 144, 8560-8575;
Y. Ni, T. Y. Gopalakrishna, H. Phan, T. Kim, T. S. Herng, Y. Han, T. Tao, J. Ding, D. Kim, J. Wu, Nat. Chem. 2020, 12, 242-248.
 
S. Higashibayashi, P. Pandit, R. Haruki, S.-i. Adachi, R. Kumai, Angew. Chem. Int. Ed. 2016, 55, 10830-10834;
Angew. Chem. 2016, 128, 10988-10992;
C. Li, Y. Shi, P. Li, N. Zhang, N. Wang, X. Yin, P. Chen, Org. Lett. 2021, 23, 7123-7128;
P. Pandit, K. Yamamoto, T. Nakamura, K. Nishimura, Y. Kurashige, T. Yanai, G. Nakamura, S. Masaoka, K. Furukawa, Y. Yakiyama, M. Kawano, S. Higashibayashi, Chem. Sci. 2015, 6, 4160-4173;
K. Yamamoto, S. Higashibayashi, Chem. Eur. J. 2016, 22, 663-671.
 
J. Guo, Y. Yang, C. Dou, Y. Wang, J. Am. Chem. Soc. 2021, 143, 18272-18279;
J.-Y. Shin, K. S. Kim, M.-C. Yoon, J. M. Lim, Z. S. Yoon, A. Osuka, D. Kim, Chem. Soc. Rev. 2010, 39, 2751-2767;
T. Xu, Y. Han, Z. Shen, X. Hou, Q. Jiang, W. Zeng, P. W. Ng, C. Chi, J. Am. Chem. Soc. 2021, 143, 20562-20568.
 
A. Konishi, Y. Okada, R. Kishi, M. Nakano, M. Yasuda, J. Am. Chem. Soc. 2019, 141, 560-571;
A. Konishi, Y. Okada, M. Nakano, K. Sugisaki, K. Sato, T. Takui, M. Yasuda, J. Am. Chem. Soc. 2017, 139, 15284-15287;
J. S. Wössner, D. Wassy, A. Weber, M. Bovenkerk, M. Hermann, M. Schmidt, B. Esser, J. Am. Chem. Soc. 2021, 143, 12244-12252.
 
J. M. Fernández-García, P. Izquierdo-García, M. Buendía, S. Filippone, N. Martín, Chem. Commun. 2022, 58, 2634-2645;
R. H. Janke, G. Haufe, E.-U. Würthwein, J. H. Borkent, J. Am. Chem. Soc. 1996, 118, 6031-6035.
L. Arrico, L. Di Bari, F. Zinna, Chem. Eur. J. 2021, 27, 2920-2934.
S. Xin, Y. Han, W. Fan, X. Wang, Y. Ni, J. Wu, Angew. Chem. Int. Ed. 2022, 61, e202209448;
Angew. Chem. 2022, 134, e202209448.
 
J. Kruszewski, T. M. Krygowski, Tetrahedron Lett. 1972, 13, 3839-3842;
T. M. Krygowski, J. Chem. Inf. Comput. Sci. 1993, 33, 70-78;
T. M. Krygowski, M. K. Cyrański, Chem. Rev. 2001, 101, 1385-1420.
The harmonic oscillator model of aromaticity (HOMA) calculated according to bond lengths was unsuccessful probably due to the distorted structure of the central N2C4 core (referring to the X-ray structure), and the optimal value Ropt used for the HOMA analysis may need to be further modified.
Deposition Numbers 2210533 (for 3), 2210534 (for 7), and 2210535 (for C) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.

Auteurs

Chenglong Li (C)

Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.

Chen Zhang (C)

Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les matériaux, UMR CNRS 5254, Université de Pau et des Pays de l'Adour, Avenue de l' Université, 64000, Pau, France.

Pengfei Li (P)

Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.

Yawei Jia (Y)

Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.

Jiaxian Duan (J)

Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.

Meiyan Liu (M)

Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.

Niu Zhang (N)

Analysis & Testing Centers, Beijing Institute of Technology, Beijing, 102488, China.

Pangkuan Chen (P)

Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.

Classifications MeSH