Impacts of autophagy on the formation of organelle-free zone during the lens development.
Autophagy
Lens development
Organelle-free zone
Journal
Molecular biology reports
ISSN: 1573-4978
Titre abrégé: Mol Biol Rep
Pays: Netherlands
ID NLM: 0403234
Informations de publication
Date de publication:
May 2023
May 2023
Historique:
received:
29
09
2022
accepted:
02
02
2023
medline:
1
5
2023
pubmed:
7
3
2023
entrez:
6
3
2023
Statut:
ppublish
Résumé
The thorough degeneration of organelles in the core of the lens is certainly a hallmark event during the lens development. Organelles degradation in the terminal differentiation process of lens fiber cells to form an organelle-free zone is critical for lens maturation and transparency. Several mechanisms have been proposed to expand our understanding of lens organelles degradation, including apoptotic pathways, the participation of ribozyme, proteolytic enzyme and phospholipase A and acyltransferase, and the newly discovered roles for autophagy. Autophagy is a lysosome-dependent degradation reaction during which the "useless" cellular components are degraded and recycled. These cellular components, such as incorrectly folded proteins, damaged organelles and other macromolecules, are first engulfed by the autophagosome before being further delivered to lysosomes for degradation. Although autophagy has been recognized involving in organelle degradation of the lens, the detailed functions remain to be discovered. Recent advances have revealed that autophagy not only plays a vital role in the intracellular quality control of the lens but is also involved in the degradation of nonnuclear organelles in the process of lens fiber cell differentiation. Herein, we first review the potential mechanisms of organelle-free zone formation, then discuss the roles of autophagy in intracellular quality control and cataract formation, and finally substantially summarize the potential involvement of autophagy in the development of organelle-free zone formation.
Identifiants
pubmed: 36877352
doi: 10.1007/s11033-023-08323-6
pii: 10.1007/s11033-023-08323-6
doi:
Substances chimiques
Proteins
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
4551-4564Subventions
Organisme : Young Scientists Fund
ID : 82000923
Organisme : Young Scientists Fund
ID : 82101097
Organisme : National Natural Science Foundation of China
ID : 82070937
Organisme : National Natural Science Foundation of China
ID : 81870640
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature B.V.
Références
Bassnett S (2009) On the mechanism of organelle degradation in the vertebrate lens. Exp Eye Res 88(2):133–139. https://doi.org/10.1016/j.exer.2008.08.017
doi: 10.1016/j.exer.2008.08.017
pubmed: 18840431
Bassnett S, Shi Y, Vrensen GF (2011) Biological glass: structural determinants of eye lens transparency. Philos Trans R Soc Lond B Biol Sci 366(1568):1250–1264. https://doi.org/10.1098/rstb.2010.0302
doi: 10.1098/rstb.2010.0302
pubmed: 21402584
pmcid: 3061108
Greiling TM, Clark JI (2009) Early lens development in the zebrafish: a three-dimensional time-lapse analysis. Dev Dyn 238(9):2254–2265. https://doi.org/10.1002/dvdy.21997
doi: 10.1002/dvdy.21997
pubmed: 19504455
Greiling TM, Clark JI (2012) New insights into the mechanism of lens development using zebra fish. Int Rev Cell Mol Biol 296:1–61. https://doi.org/10.1016/b978-0-12-394307-1.00001-1
doi: 10.1016/b978-0-12-394307-1.00001-1
pubmed: 22559937
Cvekl A, Zhang X (2017) Signaling and Gene Regulatory Networks in mammalian Lens Development. Trends Genet 33(10):677–702. https://doi.org/10.1016/j.tig.2017.08.001
doi: 10.1016/j.tig.2017.08.001
pubmed: 28867048
pmcid: 5627649
Pichi F, Lembo A, Serafino M, Nucci P (2016) Genetics of congenital cataract. Dev Ophthalmol 57:1–14. https://doi.org/10.1159/000442495
doi: 10.1159/000442495
pubmed: 27043388
Brennan L, Disatham J, Kantorow M (2021) Mechanisms of organelle elimination for lens development and differentiation. Exp Eye Res 209:108682. https://doi.org/10.1016/j.exer.2021.108682
doi: 10.1016/j.exer.2021.108682
pubmed: 34214522
Morishita H, Eguchi T, Tsukamoto S, Sakamaki Y, Takahashi S, Saito C et al (2021) Organelle degradation in the lens by PLAAT phospholipases. Nature 592(7855):634–638. https://doi.org/10.1038/s41586-021-03439-w
doi: 10.1038/s41586-021-03439-w
pubmed: 33854238
Kim KH, Lee MS (2014) Autophagy–a key player in cellular and body metabolism. Nat Rev Endocrinol 10(6):322–337. https://doi.org/10.1038/nrendo.2014.35
doi: 10.1038/nrendo.2014.35
pubmed: 24663220
Morishita H, Mizushima N (2016) Autophagy in the lens. Exp Eye Res 144:22–28. https://doi.org/10.1016/j.exer.2015.08.019
doi: 10.1016/j.exer.2015.08.019
pubmed: 26302409
Yang X, Pan X, Zhao X, Luo J, Xu M, Bai D et al (2019) Autophagy and Age-Related Eye Diseases. Biomed Res Int 2019:5763658. https://doi.org/10.1155/2019/5763658
doi: 10.1155/2019/5763658
pubmed: 31950044
pmcid: 6948295
Zhang J, Cui WW, Du C, Huang Y, Pi X, Guo W et al (2020) Knockout of DNase1l1l abrogates lens denucleation process and causes cataract in zebrafish. Biochim Biophys Acta Mol Basis Dis 1866(5):165724. https://doi.org/10.1016/j.bbadis.2020.165724
doi: 10.1016/j.bbadis.2020.165724
pubmed: 32061775
Bassnett S (2002) Lens organelle degradation. Exp Eye Res 74(1):1–6. https://doi.org/10.1006/exer.2001.1111
doi: 10.1006/exer.2001.1111
pubmed: 11878813
Morishita H, Eguchi S, Kimura H, Sasaki J, Sakamaki Y, Robinson ML et al (2013) Deletion of autophagy-related 5 (Atg5) and Pik3c3 genes in the lens causes cataract independent of programmed organelle degradation. J Biol Chem 288(16):11436–11447. https://doi.org/10.1074/jbc.M112.437103
doi: 10.1074/jbc.M112.437103
pubmed: 23479732
pmcid: 3630873
Dupont N, Nascimbeni AC, Morel E, Codogno P (2017) Molecular Mechanisms of Noncanonical Autophagy. Int Rev Cell Mol Biol 328:1–23. https://doi.org/10.1016/bs.ircmb.2016.08.001
doi: 10.1016/bs.ircmb.2016.08.001
pubmed: 28069131
Brennan LA, McGreal-Estrada R, Logan CM, Cvekl A, Menko AS, Kantorow M (2018) BNIP3L/NIX is required for elimination of mitochondria, endoplasmic reticulum and golgi apparatus during eye lens organelle-free zone formation. Exp Eye Res 174:173–184. https://doi.org/10.1016/j.exer.2018.06.003
doi: 10.1016/j.exer.2018.06.003
pubmed: 29879393
pmcid: 6110959
Basu S, Rajakaruna S, Reyes B, Van Bockstaele E, Menko AS (2014) Suppression of MAPK/JNK-MTORC1 signaling leads to premature loss of organelles and nuclei by autophagy during terminal differentiation of lens fiber cells. Autophagy 10(7):1193–1211. https://doi.org/10.4161/auto.28768
doi: 10.4161/auto.28768
pubmed: 24813396
pmcid: 4203547
Ogino H, Ochi H, Reza HM, Yasuda K (2012) Transcription factors involved in lens development from the preplacodal ectoderm. Dev Biol 363(2):333–347. https://doi.org/10.1016/j.ydbio.2012.01.006
doi: 10.1016/j.ydbio.2012.01.006
pubmed: 22269169
Fuhrmann S (2010) Eye morphogenesis and patterning of the optic vesicle. Curr Top Dev Biol 93:61–84. https://doi.org/10.1016/b978-0-12-385044-7.00003-5
doi: 10.1016/b978-0-12-385044-7.00003-5
pubmed: 20959163
pmcid: 2958684
Griep AE (2006) Cell cycle regulation in the developing lens. Semin Cell Dev Biol 17(6):686–697. https://doi.org/10.1016/j.semcdb.2006.10.004
doi: 10.1016/j.semcdb.2006.10.004
pubmed: 17218126
pmcid: 2570782
Danysh BP, Duncan MK (2009) The lens capsule. Exp Eye Res 88(2):151–164. https://doi.org/10.1016/j.exer.2008.08.002
doi: 10.1016/j.exer.2008.08.002
pubmed: 18773892
Bassnett S, Costello MJ (2017) The cause and consequence of fiber cell compaction in the vertebrate lens. Exp Eye Res 156:50–57. https://doi.org/10.1016/j.exer.2016.03.009
doi: 10.1016/j.exer.2016.03.009
pubmed: 26992780
Bassnett S, Beebe DC (1992) Coincident loss of mitochondria and nuclei during lens fiber cell differentiation. Dev Dyn 194(2):85–93. https://doi.org/10.1002/aja.1001940202
doi: 10.1002/aja.1001940202
pubmed: 1421526
Ivanov D, Dvoriantchikova G, Pestova A, Nathanson L, Shestopalov VI (2005) Microarray analysis of fiber cell maturation in the lens. FEBS Lett 579(5):1213–1219. https://doi.org/10.1016/j.febslet.2005.01.016
doi: 10.1016/j.febslet.2005.01.016
pubmed: 15710416
pmcid: 1401504
Nakahara M, Nagasaka A, Koike M, Uchida K, Kawane K, Uchiyama Y et al (2007) Degradation of nuclear DNA by DNase II-like acid DNase in cortical fiber cells of mouse eye lens. Febs j 274(12):3055–3064. https://doi.org/10.1111/j.1742-4658.2007.05836.x
doi: 10.1111/j.1742-4658.2007.05836.x
pubmed: 17509075
Nishimoto S, Kawane K, Watanabe-Fukunaga R, Fukuyama H, Ohsawa Y, Uchiyama Y et al (2003) Nuclear cataract caused by a lack of DNA degradation in the mouse eye lens. Nature 424(6952):1071–1074. https://doi.org/10.1038/nature01895
doi: 10.1038/nature01895
pubmed: 12944971
Chaffee BR, Shang F, Chang ML, Clement TM, Eddy EM, Wagner BD et al (2014) Nuclear removal during terminal lens fiber cell differentiation requires CDK1 activity: appropriating mitosis-related nuclear disassembly. Development 141(17):3388–3398. https://doi.org/10.1242/dev.106005
doi: 10.1242/dev.106005
pubmed: 25139855
pmcid: 4199135
Gao M, Huang Y, Wang L, Huang M, Liu F, Liao S et al (2017) HSF4 regulates lens fiber cell differentiation by activating p53 and its downstream regulators. Cell Death Dis 8(10):e3082. https://doi.org/10.1038/cddis.2017.478
doi: 10.1038/cddis.2017.478
pubmed: 28981088
pmcid: 5682647
Costello MJ, Gilliland KO, Mohamed A, Schey KL, Johnsen S, Brennan LA et al (2020) Novel mitochondrial derived nuclear excisosome degrades nuclei during differentiation of prosimian Galago (bush baby) monkey lenses. PLoS ONE 15(11):e0241631. https://doi.org/10.1371/journal.pone.0241631
doi: 10.1371/journal.pone.0241631
pubmed: 33180800
pmcid: 7660580
Bassnett S (1995) The fate of the Golgi apparatus and the endoplasmic reticulum during lens fiber cell differentiation. Invest Ophthalmol Vis Sci 36(9):1793–1803. https://pubmed.ncbi.nlm.nih.gov/7635654/
Bassnett S, Šikić H (2017) The lens growth process. Prog Retin Eye Res 60:181–200. https://doi.org/10.1016/j.preteyeres.2017.04.001
doi: 10.1016/j.preteyeres.2017.04.001
pubmed: 28411123
pmcid: 5605917
Bassnett S (1992) Mitochondrial dynamics in differentiating fiber cells of the mammalian lens. Curr Eye Res 11(12):1227–1232. https://doi.org/10.3109/02713689208999548
doi: 10.3109/02713689208999548
pubmed: 1490341
Zandy AJ, Bassnett S (2007) Proteolytic mechanisms underlying mitochondrial degradation in the ocular lens. Invest Ophthalmol Vis Sci 48(1):293–302. https://doi.org/10.1167/iovs.06-0656
doi: 10.1167/iovs.06-0656
pubmed: 17197546
Wride MA (2000) Minireview: apoptosis as seen through a lens. Apoptosis 5(3):203–209. https://doi.org/10.1023/a:1009653326511
doi: 10.1023/a:1009653326511
pubmed: 11225840
Dahm R (1999) Lens fibre cell differentiation - A link with apoptosis? Ophthalmic Res 31(3):163–183. https://doi.org/10.1159/000055530
doi: 10.1159/000055530
pubmed: 10224500
Sanders EJ, Parker E (2003) Retroviral overexpression of bcl-2 in the embryonic chick lens influences denucleation in differentiating lens fiber cells. Differentiation 71(7):425–433. https://doi.org/10.1046/j.1432-0436.2003.7107005.x
doi: 10.1046/j.1432-0436.2003.7107005.x
pubmed: 12969335
Weber GF, Menko AS (2005) The canonical intrinsic mitochondrial death pathway has a non-apoptotic role in signaling lens cell differentiation. J Biol Chem 280(23):22135–22145. https://doi.org/10.1074/jbc.M414270200
doi: 10.1074/jbc.M414270200
pubmed: 15826955
Sanders EJ, Parker E (2002) The role of mitochondria, cytochrome c and caspase-9 in embryonic lens fibre cell denucleation. J Anat 201(2):121–135. https://doi.org/10.1046/j.1469-7580.2002.00081.x
doi: 10.1046/j.1469-7580.2002.00081.x
pubmed: 12220121
pmcid: 1570907
Ishizaki Y, Jacobson MD, Raff MC (1998) A role for caspases in lens fiber differentiation. J Cell Biol 140(1):153–158. https://doi.org/10.1083/jcb.140.1.153
doi: 10.1083/jcb.140.1.153
pubmed: 9425163
pmcid: 2132591
Foley JD, Rosenbaum H, Griep AE (2004) Temporal regulation of VEID-7-amino-4-trifluoromethylcoumarin cleavage activity and caspase-6 correlates with organelle loss during lens development. J Biol Chem 279(31):32142–32150. https://doi.org/10.1074/jbc.M313683200
doi: 10.1074/jbc.M313683200
pubmed: 15161922
Dahm R, Gribbon C, Quinlan RA, Prescott AR (1997) Lens cell organelle loss during differentiation versus stress-induced apoptotic changes. Biochem Soc Trans 25(4):S584. https://doi.org/10.1042/bst025s584
doi: 10.1042/bst025s584
pubmed: 9450012
Dou Z, Xu C, Donahue G, Shimi T, Pan JA, Zhu J et al (2015) Autophagy mediates degradation of nuclear lamina. Nature 527(7576):105–109. https://doi.org/10.1038/nature15548
doi: 10.1038/nature15548
pubmed: 26524528
pmcid: 4824414
Jin M, Liu X, Klionsky DJ (2013) SnapShot: selective autophagy. Cell 152(1–2):368–368. e362
doi: 10.1016/j.cell.2013.01.004
pubmed: 23332767
pmcid: 3627723
Galluzzi L, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cecconi F et al (2017) Molecular definitions of autophagy and related processes. Embo j 36(13):1811–1836. https://doi.org/10.15252/embj.201796697
doi: 10.15252/embj.201796697
pubmed: 28596378
pmcid: 5494474
Farré JC, Subramani S (2016) Mechanistic insights into selective autophagy pathways: lessons from yeast. Nat Rev Mol Cell Biol 17(9):537–552. https://doi.org/10.1038/nrm.2016.74
doi: 10.1038/nrm.2016.74
pubmed: 27381245
pmcid: 5549613
Frost LS, Mitchell CH, Boesze-Battaglia K (2014) Autophagy in the eye: implications for ocular cell health. Exp Eye Res 124:56–66. https://doi.org/10.1016/j.exer.2014.04.010
doi: 10.1016/j.exer.2014.04.010
pubmed: 24810222
pmcid: 4156154
Ktistakis NT, Tooze SA (2016) Digesting the Expanding Mechanisms of Autophagy. Trends Cell Biol 26(8):624–635. https://doi.org/10.1016/j.tcb.2016.03.006
doi: 10.1016/j.tcb.2016.03.006
pubmed: 27050762
Yue Z, Jin S, Yang C, Levine AJ, Heintz N (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A 100(25):15077–15082. https://doi.org/10.1073/pnas.2436255100
doi: 10.1073/pnas.2436255100
pubmed: 14657337
pmcid: 299911
Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N et al (2000) A ubiquitin-like system mediates protein lipidation. Nature 408(6811):488–492. https://doi.org/10.1038/35044114
doi: 10.1038/35044114
pubmed: 11100732
Collier JJ, Guissart C, Oláhová M, Sasorith S, Piron-Prunier F, Suomi F et al (2021) Developmental Consequences of defective ATG7-Mediated autophagy in humans. N Engl J Med 384(25):2406–2417. https://doi.org/10.1056/NEJMoa1915722
doi: 10.1056/NEJMoa1915722
pubmed: 34161705
pmcid: 7611730
Boya P, Esteban-Martínez L, Serrano-Puebla A, Gómez-Sintes R, Villarejo-Zori B (2016) Autophagy in the eye: development, degeneration, and aging. Prog Retin Eye Res 55:206–245. https://doi.org/10.1016/j.preteyeres.2016.08.001
doi: 10.1016/j.preteyeres.2016.08.001
pubmed: 27566190
Cadwell K (2016) Crosstalk between autophagy and inflammatory signalling pathways: balancing defence and homeostasis. Nat Rev Immunol 16(11):661–675. https://doi.org/10.1038/nri.2016.100
doi: 10.1038/nri.2016.100
pubmed: 27694913
pmcid: 5343289
Choi AM, Ryter SW, Levine B (2013) Autophagy in human health and disease. N Engl J Med 368(7):651–662. https://doi.org/10.1056/NEJMra1205406
doi: 10.1056/NEJMra1205406
pubmed: 23406030
Chai P, Ni H, Zhang H, Fan X (2016) The evolving functions of Autophagy in Ocular Health: a double-edged Sword. Int J Biol Sci 12(11):1332–1340. https://doi.org/10.7150/ijbs.16245
doi: 10.7150/ijbs.16245
pubmed: 27877085
pmcid: 5118779
Costello MJ, Brennan LA, Basu S, Chauss D, Mohamed A, Gilliland KO et al (2013) Autophagy and mitophagy participate in ocular lens organelle degradation. Exp Eye Res 116:141–150. https://doi.org/10.1016/j.exer.2013.08.017
doi: 10.1016/j.exer.2013.08.017
pubmed: 24012988
Rafferty NS, Rafferty KA Jr (1981) Cell population kinetics of the mouse lens epithelium. J Cell Physiol 107(3):309–315. https://doi.org/10.1002/jcp.1041070302
doi: 10.1002/jcp.1041070302
pubmed: 7251687
Walton J, McAvoy J (1984) Sequential structural response of lens epithelium to retina-conditioned medium. Exp Eye Res 39(2):217–229. https://doi.org/10.1016/0014-4835(84)90010-1
doi: 10.1016/0014-4835(84)90010-1
pubmed: 6489471
Menko AS, Klukas KA, Johnson RG (1984) Chicken embryo lens cultures mimic differentiation in the lens. Dev Biol 103(1):129–141. https://doi.org/10.1016/0012-1606(84)90014-9
doi: 10.1016/0012-1606(84)90014-9
pubmed: 6370757
Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451(7182):1069–1075. https://doi.org/10.1038/nature06639
doi: 10.1038/nature06639
pubmed: 18305538
pmcid: 2670399
Lou MF (2003) Redox regulation in the lens. Prog Retin Eye Res 22(5):657–682. https://doi.org/10.1016/s1350-9462(03)00050-8
doi: 10.1016/s1350-9462(03)00050-8
pubmed: 12892645
Shang F, Taylor A (2004) Function of the ubiquitin proteolytic pathway in the eye. Exp Eye Res 78(1):1–14. https://doi.org/10.1016/j.exer.2003.10.003
doi: 10.1016/j.exer.2003.10.003
pubmed: 14667823
Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147(4):728–741. https://doi.org/10.1016/j.cell.2011.10.026
doi: 10.1016/j.cell.2011.10.026
pubmed: 22078875
Chen J, Ma Z, Jiao X, Fariss R, Kantorow WL, Kantorow M et al (2011) Mutations in FYCO1 cause autosomal-recessive congenital cataracts. Am J Hum Genet 88(6):827–838. https://doi.org/10.1016/j.ajhg.2011.05.008
doi: 10.1016/j.ajhg.2011.05.008
pubmed: 21636066
pmcid: 3113247
Pankiv S, Alemu EA, Brech A, Bruun JA, Lamark T, Overvatn A et al (2010) FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport. J Cell Biol 188(2):253–269. https://doi.org/10.1083/jcb.200907015
doi: 10.1083/jcb.200907015
pubmed: 20100911
pmcid: 2812517
Zhou J, Yao K, Zhang Y, Chen G, Lai K, Yin H et al (2016) Thioredoxin binding Protein-2 regulates Autophagy of Human Lens epithelial cells under oxidative stress via inhibition of akt phosphorylation. Oxid Med Cell Longev 2016:4856431. https://doi.org/10.1155/2016/4856431
doi: 10.1155/2016/4856431
pubmed: 27656263
pmcid: 5021881
Liyanage NP, Fernando MR, Lou MF (2007) Regulation of the bioavailability of thioredoxin in the lens by a specific thioredoxin-binding protein (TBP-2). Exp Eye Res 85(2):270–279. https://doi.org/10.1016/j.exer.2007.05.001
doi: 10.1016/j.exer.2007.05.001
pubmed: 17603038
pmcid: 1994116
Brennan L, Disatham J, Kantorow M (2020) Hypoxia regulates the degradation of non-nuclear organelles during lens differentiation through activation of HIF1a. Exp Eye Res 198:108129. https://doi.org/10.1016/j.exer.2020.108129
doi: 10.1016/j.exer.2020.108129
pubmed: 32628953
pmcid: 7508769
Brennan LA, Kantorow WL, Chauss D, McGreal R, He S, Mattucci L et al (2012) Spatial expression patterns of autophagy genes in the eye lens and induction of autophagy in lens cells. Mol Vis 18(1773–1786).
Matsui M, Yamamoto A, Kuma A, Ohsumi Y, Mizushima N (2006) Organelle degradation during the lens and erythroid differentiation is independent of autophagy. Biochem Biophys Res Commun 339(2):485–489. https://doi.org/10.1016/j.bbrc.2005.11.044
doi: 10.1016/j.bbrc.2005.11.044
pubmed: 16300732
Nishida Y, Arakawa S, Fujitani K, Yamaguchi H, Mizuta T, Kanaseki T et al (2009) Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 461(7264):654–658. https://doi.org/10.1038/nature08455
doi: 10.1038/nature08455
pubmed: 19794493
Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103(2):239–252. https://doi.org/10.1016/s0092-8674(00)00116-1
doi: 10.1016/s0092-8674(00)00116-1
pubmed: 11057897
Wei Y, Pattingre S, Sinha S, Bassik M, Levine B (2008) JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell 30(6):678–688. https://doi.org/10.1016/j.molcel.2008.06.001
doi: 10.1016/j.molcel.2008.06.001
pubmed: 18570871
pmcid: 2478643
Palumbo C, De Luca A, Rosato N, Forgione M, Rotili D, Caccuri AM (2016) c-Jun N-terminal kinase activation by nitrobenzoxadiazoles leads to late-stage autophagy inhibition. J Transl Med 14:37. https://doi.org/10.1186/s12967-016-0796-x
doi: 10.1186/s12967-016-0796-x
pubmed: 26847645
pmcid: 4743117
Scott RC, Schuldiner O, Neufeld TP (2004) Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev Cell 7(2):167–178. https://doi.org/10.1016/j.devcel.2004.07.009
doi: 10.1016/j.devcel.2004.07.009
pubmed: 15296714
Hall MN (2008) mTOR-what does it do? Transpl Proc 40(10 Suppl). https://doi.org/10.1016/j.transproceed.2008.10.009 . S5-8
Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115(5):577–590. https://doi.org/10.1016/s0092-8674(03)00929-2
doi: 10.1016/s0092-8674(03)00929-2
pubmed: 14651849
Klionsky DJ, Codogno P, Cuervo AM, Deretic V, Elazar Z, Fueyo-Margareto J et al (2010) A comprehensive glossary of autophagy-related molecules and processes. Autophagy 6(4):438–448. https://doi.org/10.4161/auto.6.4.12244
doi: 10.4161/auto.6.4.12244
pubmed: 20484971
Schmelzle T, Hall MN (2000) TOR, a central controller of cell growth. Cell 103(2):253–262. https://doi.org/10.1016/s0092-8674(00)00117-3
doi: 10.1016/s0092-8674(00)00117-3
pubmed: 11057898
Nojima H, Tokunaga C, Eguchi S, Oshiro N, Hidayat S, Yoshino K et al (2003) The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif. J Biol Chem 278(18):15461–15464. https://doi.org/10.1074/jbc.C200665200
doi: 10.1074/jbc.C200665200
pubmed: 12604610
Foster KG, Acosta-Jaquez HA, Romeo Y, Ekim B, Soliman GA, Carriere A et al (2010) Regulation of mTOR complex 1 (mTORC1) by raptor Ser863 and multisite phosphorylation. J Biol Chem 285(1):80–94. https://doi.org/10.1074/jbc.M109.029637
doi: 10.1074/jbc.M109.029637
pubmed: 19864431
Diwan A, Matkovich SJ, Yuan Q, Zhao W, Yatani A, Brown JH et al (2009) Endoplasmic reticulum-mitochondria crosstalk in NIX-mediated murine cell death. J Clin Invest 119(1):203–212. https://doi.org/10.1172/jci36445
doi: 10.1172/jci36445
pubmed: 19065046
Chen Y, Yan Q, Xu Y, Ye F, Sun X, Zhu H et al (2019) BNIP3-mediated Autophagy Induced Inflammatory response and inhibited VEGF expression in cultured retinal pigment epithelium cells under Hypoxia. Curr Mol Med 19(6):395–404. https://doi.org/10.2174/1566524019666190509105502
doi: 10.2174/1566524019666190509105502
pubmed: 31072291
Choi GE, Lee HJ, Chae CW, Cho JH, Jung YH, Kim JS et al (2021) BNIP3L/NIX-mediated mitophagy protects against glucocorticoid-induced synapse defects. Nat Commun 12(1):487. https://doi.org/10.1038/s41467-020-20679-y
doi: 10.1038/s41467-020-20679-y
pubmed: 33473105
pmcid: 7817668
Marinković M, Šprung M, Novak I (2021) Dimerization of mitophagy receptor BNIP3L/NIX is essential for recruitment of autophagic machinery. Autophagy 17(5):1232–1243. https://doi.org/10.1080/15548627.2020.1755120
doi: 10.1080/15548627.2020.1755120
pubmed: 32286918
Yazdankhah M, Ghosh S, Shang P, Stepicheva N, Hose S, Liu H et al (2021) BNIP3L-mediated mitophagy is required for mitochondrial remodeling during the differentiation of optic nerve oligodendrocytes. https://doi.org/10.1080/15548627.2020.1871204 . Autophagy 1–20
Sandoval H, Thiagarajan P, Dasgupta SK, Schumacher A, Prchal JT, Chen M et al (2008) Essential role for Nix in autophagic maturation of erythroid cells. Nature 454(7201):232–235. https://doi.org/10.1038/nature07006
doi: 10.1038/nature07006
pubmed: 18454133
pmcid: 2570948
Diwan A, Wansapura J, Syed FM, Matkovich SJ, Lorenz JN, Dorn GW 2nd (2008) Nix-mediated apoptosis links myocardial fibrosis, cardiac remodeling, and hypertrophy decompensation. Circulation 117(3):396–404. https://doi.org/10.1161/circulationaha.107.727073
doi: 10.1161/circulationaha.107.727073
pubmed: 18178777
pmcid: 2538800
Chauss D, Basu S, Rajakaruna S, Ma Z, Gau V, Anastas S et al (2014) Differentiation state-specific mitochondrial dynamic regulatory networks are revealed by global transcriptional analysis of the developing chicken lens. G3 (Bethesda) 4(8):1515–1527. https://doi.org/10.1534/g3.114.012120
doi: 10.1534/g3.114.012120
pubmed: 24928582
Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouysségur J et al (2009) Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 29(10):2570–2581. https://doi.org/10.1128/mcb.00166-09
doi: 10.1128/mcb.00166-09
pubmed: 19273585
pmcid: 2682037
Lutty GA, McLeod DS (2018) Development of the hyaloid, choroidal and retinal vasculatures in the fetal human eye. Prog Retin Eye Res 62:58–76. https://doi.org/10.1016/j.preteyeres.2017.10.001
doi: 10.1016/j.preteyeres.2017.10.001
pubmed: 29081352
Beebe DC, Shui YB, Siegfried CJ, Holekamp NM, Bai F (2014) Preserve the (intraocular) environment: the importance of maintaining normal oxygen gradients in the eye. Jpn J Ophthalmol 58(3):225–231. https://doi.org/10.1007/s10384-014-0318-4
doi: 10.1007/s10384-014-0318-4
pubmed: 24687817
McNulty R, Wang H, Mathias RT, Ortwerth BJ, Truscott RJ, Bassnett S (2004) Regulation of tissue oxygen levels in the mammalian lens. J Physiol 559(Pt 3):883–898. https://doi.org/10.1113/jphysiol.2004.068619
doi: 10.1113/jphysiol.2004.068619
pubmed: 15272034
pmcid: 1665185
Yuan Y, Zheng Y, Zhang X, Chen Y, Wu X, Wu J et al (2017) BNIP3L/NIX-mediated mitophagy protects against ischemic brain injury independent of PARK2. Autophagy 13(10):1754–1766. https://doi.org/10.1080/15548627.2017.1357792
doi: 10.1080/15548627.2017.1357792
pubmed: 28820284
pmcid: 5640199
Ping X, Liang J, Shi K, Bao J, Wu J, Yu X et al (2021) Rapamycin relieves the cataract caused by ablation of Gja8b through stimulating autophagy in zebrafish. Autophagy 1–15. https://doi.org/10.1080/15548627.2021.1872188
Fu Q, Qin Z, Jin X, Zhang L, Chen Z, He J et al (2017) Generation of Functional Lentoid Bodies from Human Induced Pluripotent stem cells derived from urinary cells. Invest Ophthalmol Vis Sci 58(1):517–527. https://doi.org/10.1167/iovs.16-20504
doi: 10.1167/iovs.16-20504
pubmed: 28125839
Qin Z, Zhang L, Lyu D, Li J, Tang Q, Yin H et al (2019) Opacification of lentoid bodies derived from human induced pluripotent stem cells is accelerated by hydrogen peroxide and involves protein aggregation. J Cell Physiol 234(12):23750–23762. https://doi.org/10.1002/jcp.28943
doi: 10.1002/jcp.28943
pubmed: 31180584
Lyu D, Zhang L, Qin Z, Ni S, Li J, Lu B et al (2021) Modeling congenital cataract in vitro using patient-specific induced pluripotent stem cells. NPJ Regen Med 6(1):60. https://doi.org/10.1038/s41536-021-00171-x
doi: 10.1038/s41536-021-00171-x
pubmed: 34599192
pmcid: 8486789
Fu Q, Qin Z, Zhang L, Lyu D, Tang Q, Yin H et al (2017) A New Long Noncoding RNA ALB regulates autophagy by enhancing the Transformation of LC3BI to LC3BII during human Lens Development. Mol Ther Nucleic Acids 9:207–217. https://doi.org/10.1016/j.omtn.2017.09.011
doi: 10.1016/j.omtn.2017.09.011
pubmed: 29246299
pmcid: 5650653
Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S et al (2021) Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)(1). Autophagy 17(1):1-382. https://doi.org/10.1080/15548627.2020.1797280