Identification of putative regulatory single-nucleotide variants in NTN1 gene associated with NSCL/P.


Journal

Journal of human genetics
ISSN: 1435-232X
Titre abrégé: J Hum Genet
Pays: England
ID NLM: 9808008

Informations de publication

Date de publication:
Jul 2023
Historique:
received: 23 11 2022
accepted: 15 02 2023
revised: 31 01 2023
medline: 27 6 2023
pubmed: 7 3 2023
entrez: 6 3 2023
Statut: ppublish

Résumé

Non-syndromic cleft lip with or without cleft palate (NSCL/P) is a common polygenetic disease. Although genome-wide association studies (GWAS) identified NTN1 gene as a high-priority candidate of NSCL/P, the comprehensive genetic architecture of NTN1 weren't yet known. Thus, this study aimed to determine full-scale genetic variants of NTN1 for NSCL/P in Chinese Han people. Initially, targeted sequencing of NTN1 gene was performed on 159 NSCL/P patients to identify susceptible single nucleotide polymorphisms (SNPs) associated with NSCL/P. Then, association analysis and burden analysis were separately used to validate the common variants and rare variants identified among large size of samples (1608 NSCL/P cases and 2255 controls). Additionally, NSCL/P subtype association analysis was applied to elucidate the etiology discrepancy of non-syndromic cleft lip with palate (NSCLP) and non-syndromic cleft lip only (NSCLO). Lastly, bioinformatics analysis was performed to annotate and prioritize candidate variants. We found 15 NSCL/P-associated SNPs including rs4791774 (P = 1.10E-08, OR = 1.467, 95% CI: 1.286~1.673) and rs9788972 (P = 1.28E-07, OR = 1.398, 95% CI : 1.235~1.584) originally detected by previous GWASs in Chinese Han ancestry. Four NSCLO risk-associated SNPs and eight specific NSCLP associated SNPs were found. Three SNPs (rs4791331, rs4791774 and rs9900753) were predicted to locate at regulatory region of NTN1. Our study validated the association between NTN1 gene and pathogenesis of NSCL/P and reinforced the hypothesis that NSCLP have a different etiology from NSCLO. We also identified three putative regulatory SNPs in NTN1 gene.

Identifiants

pubmed: 36879001
doi: 10.1038/s10038-023-01137-1
pii: 10.1038/s10038-023-01137-1
doi:

Substances chimiques

Nucleotides 0
NTN1 protein, human 0
Netrin-1 158651-98-0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

491-497

Informations de copyright

© 2023. The Author(s), under exclusive licence to The Japan Society of Human Genetics.

Références

Tanaka SA, Mahabir RC, Jupiter DC, Menezes JM. Updating the epidemiology of cleft lip with or without cleft palate. Plast Reconstr Surg. 2012;129:511e–8e.
pubmed: 22374000 doi: 10.1097/PRS.0b013e3182402dd1
Fan D, Wu S, Liu L, Xia Q, Tian G, Wang W, et al. Prevalence of non-syndromic orofacial clefts: based on 15,094,978 Chinese perinatal infants. Oncotarget. 2018;9:13981–90.
pubmed: 29568410 pmcid: 5862631 doi: 10.18632/oncotarget.24238
Sivertsen A, Wilcox A, Skjaerven R, Vindenes H, Abyholm F, Harville E, et al. Familial risk of oral clefts by morphological type and severity: population based cohort study of first degree relatives. BMJ. 2008;336:432–4.
pubmed: 18250102 pmcid: 2249683 doi: 10.1136/bmj.39458.563611.AE
Marazita ML. The evolution of human genetic studies of cleft lip and cleft palate. Annu Rev Genomics Hum Genet. 2012;13:263–83.
pubmed: 22703175 pmcid: 3760163 doi: 10.1146/annurev-genom-090711-163729
Mossey P, Little J, Munger R, Dixon M, Shaw W. Cleft lip and palate. Lancet 2009;374:1773–85.
pubmed: 19747722 doi: 10.1016/S0140-6736(09)60695-4
Harville E, Wilcox A, Lie R, Vindenes H, Abyholm F. Cleft lip and palate versus cleft lip only: are they distinct defects? Am J Epidemiol. 2005;162:448–53.
pubmed: 16076837 doi: 10.1093/aje/kwi214
Grosen D, Chevrier C, Skytthe A, Bille C, Mølsted K, Sivertsen A, et al. A cohort study of recurrence patterns among more than 54,000 relatives of oral cleft cases in Denmark: support for the multifactorial threshold model of inheritance. J Med Genet. 2010;47:162–8.
pubmed: 19752161 doi: 10.1136/jmg.2009.069385
Beaty TH, Murray JC, Marazita ML, Munger RG, Ruczinski I, Hetmanski JB, et al. A genome-wide association study of cleft lip with and without cleft palate identifies risk variants near MAFB and ABCA4. Nat Genet. 2010;42:525–9.
pubmed: 20436469 pmcid: 2941216 doi: 10.1038/ng.580
Ludwig KU, Mangold E, Herms S, Nowak S, Reutter H, Paul A, et al. Genome-wide meta-analyses of nonsyndromic cleft lip with or without cleft palate identify six new risk loci. Nat Genet. 2012;44:968–71.
pubmed: 22863734 pmcid: 3598617 doi: 10.1038/ng.2360
Beaty TH, Taub MA, Scott AF, Murray JC, Marazita ML, Schwender H, et al. Confirming genes influencing risk to cleft lip with/without cleft palate in a case-parent trio study. Hum Genet. 2013;132:771–81.
pubmed: 23512105 pmcid: 3707506 doi: 10.1007/s00439-013-1283-6
Leslie EJ, Carlson JC, Shaffer JR, Feingold E, Wehby G, Laurie CA, et al. A multi-ethnic genome-wide association study identifies novel loci for non-syndromic cleft lip with or without cleft palate on 2p24.2, 17q23 and 19q13. Hum Mol Genet 2016;25:2862–72.
pubmed: 27033726 pmcid: 5181632
Sun Y, Huang Y, Yin A, Pan Y, Wang Y, Wang C, et al. Genome-wide association study identifies a new susceptibility locus for cleft lip with or without a cleft palate. Nat Commun. 2015;6:6414.
pubmed: 25775280 doi: 10.1038/ncomms7414
Mukhopadhyay N, Feingold E, Moreno-Uribe L, Wehby G, Valencia-Ramirez LC, Muneton CPR, et al. Genome-wide association study of non-syndromic orofacial clefts in a multiethnic sample of families and controls identifies novel regions. Front Cell Dev Biol. 2021;9:621482.
pubmed: 33898419 pmcid: 8062975 doi: 10.3389/fcell.2021.621482
Leslie EJ, Taub MA, Liu H, Steinberg KM, Koboldt DC, Zhang Q, et al. Identification of functional variants for cleft lip with or without cleft palate in or near PAX7, FGFR2, and NOG by targeted sequencing of GWAS loci. Am J Hum Genet. 2015;96:397–411.
pubmed: 25704602 pmcid: 4375420 doi: 10.1016/j.ajhg.2015.01.004
Li D, Zhu G, Lou S, Ma L, Zhang C, Pan Y, et al. The functional variant of NTN1 contributes to the risk of nonsyndromic cleft lip with or without cleft palate. Eur J Hum Genet. 2020;28:453–60.
pubmed: 31780810 doi: 10.1038/s41431-019-0549-4
Tam V, Patel N, Turcotte M, Bosse Y, Pare G, Meyre D. Benefits and limitations of genome-wide association studies. Nat Rev Genet. 2019;20:467–84.
pubmed: 31068683 doi: 10.1038/s41576-019-0127-1
Bonnefond A, Froguel P. Rare and common genetic events in type 2 diabetes: what should biologists know? Cell Metab. 2015;21:357–68.
pubmed: 25640731 doi: 10.1016/j.cmet.2014.12.020
Sazonovs A, Barrett JC. Rare-variant studies to complement genome-wide association studies. Annu Rev Genomics Hum Genet. 2018;19:97–112.
pubmed: 29801418 doi: 10.1146/annurev-genom-083117-021641
International HapMap C. A haplotype map of the human genome. Nature. 2005;437:1299–320.
doi: 10.1038/nature04226
Altshuler D, Daly MJ, Lander ES. Genetic mapping in human disease. Science. 2008;322:881–8.
pubmed: 18988837 pmcid: 2694957 doi: 10.1126/science.1156409
Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 2012;337:1190–5.
pubmed: 22955828 pmcid: 3771521 doi: 10.1126/science.1222794
Thieme F, Ludwig KU. The role of noncoding genetic variation in isolated orofacial clefts. J Dent Res. 2017;96:1238–47.
pubmed: 28732180 doi: 10.1177/0022034517720403
Huang L, Jia Z, Shi Y, Du Q, Shi J, Wang Z, et al. Genetic factors define CPO and CLO subtypes of nonsyndromicorofacial cleft. PLOS Genet. 2019;15:e1008357.
pubmed: 31609978 pmcid: 6812857 doi: 10.1371/journal.pgen.1008357
Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25:1754–60.
pubmed: 19451168 pmcid: 2705234 doi: 10.1093/bioinformatics/btp324
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics.2009;25:2078–9.
pubmed: 19505943 pmcid: 2723002 doi: 10.1093/bioinformatics/btp352
Yang J, Bakshi A, Zhu Z, Hemani G, Vinkhuyzen A, Lee S, et al. Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index. Nat Genet. 2015;47:1114–20.
pubmed: 26323059 pmcid: 4589513 doi: 10.1038/ng.3390
Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet. 2013;Chapter 7:Unit7 20. https://doi.org/10.1002/0471142905.hg0720s76 .
Ng PC, Henikoff S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003;31:3812–4.
pubmed: 12824425 pmcid: 168916 doi: 10.1093/nar/gkg509
Schwarz JM, Rodelsperger C, Schuelke M, Seelow D. MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods. 2010;7:575–6.
pubmed: 20676075 doi: 10.1038/nmeth0810-575
Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019;47:D886–D94.
pubmed: 30371827 doi: 10.1093/nar/gky1016
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.
pubmed: 17701901 pmcid: 1950838 doi: 10.1086/519795
Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M, et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 2012;22:1790–7.
pubmed: 22955989 pmcid: 3431494 doi: 10.1101/gr.137323.112
Quan C, Ping J, Lu H, Zhou G, Lu Y. 3DSNP 2.0: update and expansion of the noncoding genomic variant annotation database. Nucleic Acids Res. 2022;50:D950–D5.
pubmed: 34723317 doi: 10.1093/nar/gkab1008
Ward L, Kellis M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 2012;40:D930–4.
pubmed: 22064851 doi: 10.1093/nar/gkr917
Kou I, Otomo N, Takeda K, Momozawa Y, Lu HF, Kubo M, et al. Genome-wide association study identifies 14 previously unreported susceptibility loci for adolescent idiopathic scoliosis in Japanese. Nat Commun. 2019;10:3685.
pubmed: 31417091 pmcid: 6695451 doi: 10.1038/s41467-019-11596-w
Barbeira AN, Bonazzola R, Gamazon ER, Liang Y, Park Y, Kim-Hellmuth S, et al. Exploiting the GTEx resources to decipher the mechanisms at GWAS loci. Genome Biol. 2021;22:49.
pubmed: 33499903 pmcid: 7836161 doi: 10.1186/s13059-020-02252-4
Chen S, Jia Z, Cai M, Ye M, Wu D, Wan T, et al. viaSP1-mediated upregulation of long noncoding RNA ZFAS1 involved in non-syndromic cleft lip and palate inactivating WNT/β-catenin signaling pathway. Front Cell Dev Biol. 2021;9:662780.
pubmed: 34268302 pmcid: 8275830 doi: 10.3389/fcell.2021.662780
Carlson J, Standley J, Petrin A, Shaffer J, Butali A, Buxó C, et al. Identification of 16q21 as a modifier of nonsyndromic orofacial cleft phenotypes. Genet Epidemiol. 2017;41:887–97.
pubmed: 29124805 pmcid: 5728176 doi: 10.1002/gepi.22090
Yin B, Shi JY, Lin YS, Shi B, Jia ZL. SNPs at TP63 gene was specifically associated with right-side cleft lip in Han Chinese population. Oral Dis. 2021;27:559–66.
pubmed: 32687624 doi: 10.1111/odi.13566
Çalışkan M, Manduchi E, Rao H, Segert J, Beltrame M, Trizzino M, et al. Genetic and epigenetic fine mapping of complex trait associated loci in the human. Liver 2019;105:89–107.
Blanco-Gómez A, Castillo-Lluva S, Del Mar Sáez-Freire M, Hontecillas-Prieto L, Mao J, Castellanos-Martín A, et al. Missing heritability of complex diseases: enlightenment by genetic variants from intermediate phenotypes. Bioessays. 2016;38:664–73.
pubmed: 27241833 pmcid: 5064854 doi: 10.1002/bies.201600084
Field A, Adelman K. Evaluating enhancer function and transcription. Annu Rev Biochem. 2020;89:213–34.
pubmed: 32197056 doi: 10.1146/annurev-biochem-011420-095916
Cramer P. Organization and regulation of gene transcription. Nature 2019;573:45–54.
pubmed: 31462772 doi: 10.1038/s41586-019-1517-4
Edwards S, Beesley J, French J, Dunning AM. Beyond GWASs: illuminating the dark road from association to function. Am J Hum Genet. 2013;93:779–97.
pubmed: 24210251 pmcid: 3824120 doi: 10.1016/j.ajhg.2013.10.012
Guo Q, Li D, Meng X, Liu T, Shi J, Hao Y, et al. Association between PAX7 and NTN1 gene polymorphisms and nonsyndromic orofacial clefts in a northern Chinese population. Med (Baltim). 2017;96:e6724.
doi: 10.1097/MD.0000000000006724
Xu Y, Xie B, Shi J, Li J, Zhou C, Lu W, et al. Distinct expression of miR-378 in nonsyndromic cleft lip and/or cleft palate: a cogitation of skewed sex ratio in prevalence. Cleft Palate Craniofac J. 2021;58:61–71.
pubmed: 32580581 doi: 10.1177/1055665620935364

Auteurs

Hong-Xu Tao (HX)

State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of cleft lip and palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Yi-Xin Yang (YX)

State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of cleft lip and palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Bing Shi (B)

State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of cleft lip and palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Zhong-Lin Jia (ZL)

State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of cleft lip and palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China. zhonglinjia@sina.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH