Identification of putative regulatory single-nucleotide variants in NTN1 gene associated with NSCL/P.
Journal
Journal of human genetics
ISSN: 1435-232X
Titre abrégé: J Hum Genet
Pays: England
ID NLM: 9808008
Informations de publication
Date de publication:
Jul 2023
Jul 2023
Historique:
received:
23
11
2022
accepted:
15
02
2023
revised:
31
01
2023
medline:
27
6
2023
pubmed:
7
3
2023
entrez:
6
3
2023
Statut:
ppublish
Résumé
Non-syndromic cleft lip with or without cleft palate (NSCL/P) is a common polygenetic disease. Although genome-wide association studies (GWAS) identified NTN1 gene as a high-priority candidate of NSCL/P, the comprehensive genetic architecture of NTN1 weren't yet known. Thus, this study aimed to determine full-scale genetic variants of NTN1 for NSCL/P in Chinese Han people. Initially, targeted sequencing of NTN1 gene was performed on 159 NSCL/P patients to identify susceptible single nucleotide polymorphisms (SNPs) associated with NSCL/P. Then, association analysis and burden analysis were separately used to validate the common variants and rare variants identified among large size of samples (1608 NSCL/P cases and 2255 controls). Additionally, NSCL/P subtype association analysis was applied to elucidate the etiology discrepancy of non-syndromic cleft lip with palate (NSCLP) and non-syndromic cleft lip only (NSCLO). Lastly, bioinformatics analysis was performed to annotate and prioritize candidate variants. We found 15 NSCL/P-associated SNPs including rs4791774 (P = 1.10E-08, OR = 1.467, 95% CI: 1.286~1.673) and rs9788972 (P = 1.28E-07, OR = 1.398, 95% CI : 1.235~1.584) originally detected by previous GWASs in Chinese Han ancestry. Four NSCLO risk-associated SNPs and eight specific NSCLP associated SNPs were found. Three SNPs (rs4791331, rs4791774 and rs9900753) were predicted to locate at regulatory region of NTN1. Our study validated the association between NTN1 gene and pathogenesis of NSCL/P and reinforced the hypothesis that NSCLP have a different etiology from NSCLO. We also identified three putative regulatory SNPs in NTN1 gene.
Identifiants
pubmed: 36879001
doi: 10.1038/s10038-023-01137-1
pii: 10.1038/s10038-023-01137-1
doi:
Substances chimiques
Nucleotides
0
NTN1 protein, human
0
Netrin-1
158651-98-0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
491-497Informations de copyright
© 2023. The Author(s), under exclusive licence to The Japan Society of Human Genetics.
Références
Tanaka SA, Mahabir RC, Jupiter DC, Menezes JM. Updating the epidemiology of cleft lip with or without cleft palate. Plast Reconstr Surg. 2012;129:511e–8e.
pubmed: 22374000
doi: 10.1097/PRS.0b013e3182402dd1
Fan D, Wu S, Liu L, Xia Q, Tian G, Wang W, et al. Prevalence of non-syndromic orofacial clefts: based on 15,094,978 Chinese perinatal infants. Oncotarget. 2018;9:13981–90.
pubmed: 29568410
pmcid: 5862631
doi: 10.18632/oncotarget.24238
Sivertsen A, Wilcox A, Skjaerven R, Vindenes H, Abyholm F, Harville E, et al. Familial risk of oral clefts by morphological type and severity: population based cohort study of first degree relatives. BMJ. 2008;336:432–4.
pubmed: 18250102
pmcid: 2249683
doi: 10.1136/bmj.39458.563611.AE
Marazita ML. The evolution of human genetic studies of cleft lip and cleft palate. Annu Rev Genomics Hum Genet. 2012;13:263–83.
pubmed: 22703175
pmcid: 3760163
doi: 10.1146/annurev-genom-090711-163729
Mossey P, Little J, Munger R, Dixon M, Shaw W. Cleft lip and palate. Lancet 2009;374:1773–85.
pubmed: 19747722
doi: 10.1016/S0140-6736(09)60695-4
Harville E, Wilcox A, Lie R, Vindenes H, Abyholm F. Cleft lip and palate versus cleft lip only: are they distinct defects? Am J Epidemiol. 2005;162:448–53.
pubmed: 16076837
doi: 10.1093/aje/kwi214
Grosen D, Chevrier C, Skytthe A, Bille C, Mølsted K, Sivertsen A, et al. A cohort study of recurrence patterns among more than 54,000 relatives of oral cleft cases in Denmark: support for the multifactorial threshold model of inheritance. J Med Genet. 2010;47:162–8.
pubmed: 19752161
doi: 10.1136/jmg.2009.069385
Beaty TH, Murray JC, Marazita ML, Munger RG, Ruczinski I, Hetmanski JB, et al. A genome-wide association study of cleft lip with and without cleft palate identifies risk variants near MAFB and ABCA4. Nat Genet. 2010;42:525–9.
pubmed: 20436469
pmcid: 2941216
doi: 10.1038/ng.580
Ludwig KU, Mangold E, Herms S, Nowak S, Reutter H, Paul A, et al. Genome-wide meta-analyses of nonsyndromic cleft lip with or without cleft palate identify six new risk loci. Nat Genet. 2012;44:968–71.
pubmed: 22863734
pmcid: 3598617
doi: 10.1038/ng.2360
Beaty TH, Taub MA, Scott AF, Murray JC, Marazita ML, Schwender H, et al. Confirming genes influencing risk to cleft lip with/without cleft palate in a case-parent trio study. Hum Genet. 2013;132:771–81.
pubmed: 23512105
pmcid: 3707506
doi: 10.1007/s00439-013-1283-6
Leslie EJ, Carlson JC, Shaffer JR, Feingold E, Wehby G, Laurie CA, et al. A multi-ethnic genome-wide association study identifies novel loci for non-syndromic cleft lip with or without cleft palate on 2p24.2, 17q23 and 19q13. Hum Mol Genet 2016;25:2862–72.
pubmed: 27033726
pmcid: 5181632
Sun Y, Huang Y, Yin A, Pan Y, Wang Y, Wang C, et al. Genome-wide association study identifies a new susceptibility locus for cleft lip with or without a cleft palate. Nat Commun. 2015;6:6414.
pubmed: 25775280
doi: 10.1038/ncomms7414
Mukhopadhyay N, Feingold E, Moreno-Uribe L, Wehby G, Valencia-Ramirez LC, Muneton CPR, et al. Genome-wide association study of non-syndromic orofacial clefts in a multiethnic sample of families and controls identifies novel regions. Front Cell Dev Biol. 2021;9:621482.
pubmed: 33898419
pmcid: 8062975
doi: 10.3389/fcell.2021.621482
Leslie EJ, Taub MA, Liu H, Steinberg KM, Koboldt DC, Zhang Q, et al. Identification of functional variants for cleft lip with or without cleft palate in or near PAX7, FGFR2, and NOG by targeted sequencing of GWAS loci. Am J Hum Genet. 2015;96:397–411.
pubmed: 25704602
pmcid: 4375420
doi: 10.1016/j.ajhg.2015.01.004
Li D, Zhu G, Lou S, Ma L, Zhang C, Pan Y, et al. The functional variant of NTN1 contributes to the risk of nonsyndromic cleft lip with or without cleft palate. Eur J Hum Genet. 2020;28:453–60.
pubmed: 31780810
doi: 10.1038/s41431-019-0549-4
Tam V, Patel N, Turcotte M, Bosse Y, Pare G, Meyre D. Benefits and limitations of genome-wide association studies. Nat Rev Genet. 2019;20:467–84.
pubmed: 31068683
doi: 10.1038/s41576-019-0127-1
Bonnefond A, Froguel P. Rare and common genetic events in type 2 diabetes: what should biologists know? Cell Metab. 2015;21:357–68.
pubmed: 25640731
doi: 10.1016/j.cmet.2014.12.020
Sazonovs A, Barrett JC. Rare-variant studies to complement genome-wide association studies. Annu Rev Genomics Hum Genet. 2018;19:97–112.
pubmed: 29801418
doi: 10.1146/annurev-genom-083117-021641
International HapMap C. A haplotype map of the human genome. Nature. 2005;437:1299–320.
doi: 10.1038/nature04226
Altshuler D, Daly MJ, Lander ES. Genetic mapping in human disease. Science. 2008;322:881–8.
pubmed: 18988837
pmcid: 2694957
doi: 10.1126/science.1156409
Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 2012;337:1190–5.
pubmed: 22955828
pmcid: 3771521
doi: 10.1126/science.1222794
Thieme F, Ludwig KU. The role of noncoding genetic variation in isolated orofacial clefts. J Dent Res. 2017;96:1238–47.
pubmed: 28732180
doi: 10.1177/0022034517720403
Huang L, Jia Z, Shi Y, Du Q, Shi J, Wang Z, et al. Genetic factors define CPO and CLO subtypes of nonsyndromicorofacial cleft. PLOS Genet. 2019;15:e1008357.
pubmed: 31609978
pmcid: 6812857
doi: 10.1371/journal.pgen.1008357
Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25:1754–60.
pubmed: 19451168
pmcid: 2705234
doi: 10.1093/bioinformatics/btp324
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics.2009;25:2078–9.
pubmed: 19505943
pmcid: 2723002
doi: 10.1093/bioinformatics/btp352
Yang J, Bakshi A, Zhu Z, Hemani G, Vinkhuyzen A, Lee S, et al. Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index. Nat Genet. 2015;47:1114–20.
pubmed: 26323059
pmcid: 4589513
doi: 10.1038/ng.3390
Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet. 2013;Chapter 7:Unit7 20. https://doi.org/10.1002/0471142905.hg0720s76 .
Ng PC, Henikoff S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003;31:3812–4.
pubmed: 12824425
pmcid: 168916
doi: 10.1093/nar/gkg509
Schwarz JM, Rodelsperger C, Schuelke M, Seelow D. MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods. 2010;7:575–6.
pubmed: 20676075
doi: 10.1038/nmeth0810-575
Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019;47:D886–D94.
pubmed: 30371827
doi: 10.1093/nar/gky1016
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.
pubmed: 17701901
pmcid: 1950838
doi: 10.1086/519795
Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M, et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 2012;22:1790–7.
pubmed: 22955989
pmcid: 3431494
doi: 10.1101/gr.137323.112
Quan C, Ping J, Lu H, Zhou G, Lu Y. 3DSNP 2.0: update and expansion of the noncoding genomic variant annotation database. Nucleic Acids Res. 2022;50:D950–D5.
pubmed: 34723317
doi: 10.1093/nar/gkab1008
Ward L, Kellis M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 2012;40:D930–4.
pubmed: 22064851
doi: 10.1093/nar/gkr917
Kou I, Otomo N, Takeda K, Momozawa Y, Lu HF, Kubo M, et al. Genome-wide association study identifies 14 previously unreported susceptibility loci for adolescent idiopathic scoliosis in Japanese. Nat Commun. 2019;10:3685.
pubmed: 31417091
pmcid: 6695451
doi: 10.1038/s41467-019-11596-w
Barbeira AN, Bonazzola R, Gamazon ER, Liang Y, Park Y, Kim-Hellmuth S, et al. Exploiting the GTEx resources to decipher the mechanisms at GWAS loci. Genome Biol. 2021;22:49.
pubmed: 33499903
pmcid: 7836161
doi: 10.1186/s13059-020-02252-4
Chen S, Jia Z, Cai M, Ye M, Wu D, Wan T, et al. viaSP1-mediated upregulation of long noncoding RNA ZFAS1 involved in non-syndromic cleft lip and palate inactivating WNT/β-catenin signaling pathway. Front Cell Dev Biol. 2021;9:662780.
pubmed: 34268302
pmcid: 8275830
doi: 10.3389/fcell.2021.662780
Carlson J, Standley J, Petrin A, Shaffer J, Butali A, Buxó C, et al. Identification of 16q21 as a modifier of nonsyndromic orofacial cleft phenotypes. Genet Epidemiol. 2017;41:887–97.
pubmed: 29124805
pmcid: 5728176
doi: 10.1002/gepi.22090
Yin B, Shi JY, Lin YS, Shi B, Jia ZL. SNPs at TP63 gene was specifically associated with right-side cleft lip in Han Chinese population. Oral Dis. 2021;27:559–66.
pubmed: 32687624
doi: 10.1111/odi.13566
Çalışkan M, Manduchi E, Rao H, Segert J, Beltrame M, Trizzino M, et al. Genetic and epigenetic fine mapping of complex trait associated loci in the human. Liver 2019;105:89–107.
Blanco-Gómez A, Castillo-Lluva S, Del Mar Sáez-Freire M, Hontecillas-Prieto L, Mao J, Castellanos-Martín A, et al. Missing heritability of complex diseases: enlightenment by genetic variants from intermediate phenotypes. Bioessays. 2016;38:664–73.
pubmed: 27241833
pmcid: 5064854
doi: 10.1002/bies.201600084
Field A, Adelman K. Evaluating enhancer function and transcription. Annu Rev Biochem. 2020;89:213–34.
pubmed: 32197056
doi: 10.1146/annurev-biochem-011420-095916
Cramer P. Organization and regulation of gene transcription. Nature 2019;573:45–54.
pubmed: 31462772
doi: 10.1038/s41586-019-1517-4
Edwards S, Beesley J, French J, Dunning AM. Beyond GWASs: illuminating the dark road from association to function. Am J Hum Genet. 2013;93:779–97.
pubmed: 24210251
pmcid: 3824120
doi: 10.1016/j.ajhg.2013.10.012
Guo Q, Li D, Meng X, Liu T, Shi J, Hao Y, et al. Association between PAX7 and NTN1 gene polymorphisms and nonsyndromic orofacial clefts in a northern Chinese population. Med (Baltim). 2017;96:e6724.
doi: 10.1097/MD.0000000000006724
Xu Y, Xie B, Shi J, Li J, Zhou C, Lu W, et al. Distinct expression of miR-378 in nonsyndromic cleft lip and/or cleft palate: a cogitation of skewed sex ratio in prevalence. Cleft Palate Craniofac J. 2021;58:61–71.
pubmed: 32580581
doi: 10.1177/1055665620935364