Amnion-derived serum amyloid A1 participates in sterile inflammation of fetal membranes at parturition.


Journal

Inflammation research : official journal of the European Histamine Research Society ... [et al.]
ISSN: 1420-908X
Titre abrégé: Inflamm Res
Pays: Switzerland
ID NLM: 9508160

Informations de publication

Date de publication:
Apr 2023
Historique:
received: 04 01 2023
accepted: 19 02 2023
revised: 05 02 2023
medline: 27 4 2023
pubmed: 7 3 2023
entrez: 6 3 2023
Statut: ppublish

Résumé

Sterile inflammation of fetal membranes is an indispensable event of normal parturition. However, triggers of sterile inflammation are not fully resolved. Serum amyloid A1 (SAA1) is an acute phase protein produced primarily by the liver. Fetal membranes can also synthesize SAA1 but its functions are not well defined. Given the role of SAA1 in the acute phase response to inflammation, we postulated that SAA1 synthesized in the fetal membranes may be a trigger of local inflammation at parturition. The changes of SAA1 abundance in parturition were studied in the amnion of human fetal membranes. The role of SAA1 in chemokine expression and leukocyte chemotaxis was examined in cultured human amnion tissue explants as well as primary human amnion fibroblasts. The effects of SAA1 on monocytes, macrophages and dendritic cells were investigated in cells derived from a human leukemia monocytic cell line (THP-1). SAA1 synthesis increased significantly in human amnion at parturition. SAA1 evoked multiple chemotaxis pathways in human amnion fibroblasts along with upregulation of a series of chemokines via both toll-like receptor 4 (TLR4) and formyl peptide receptor 2 (FPR2). Moreover, SAA1-conditioned medium of cultured amnion fibroblasts was capable of chemoattracting virtually all types of mononuclear leukocytes, particularly monocytes and dendritic cells, which reconciled with the chemotactic activity of conditioned medium of cultured amnion tissue explants collected from spontaneous labor. Furthermore, SAA1 could induce the expression of genes associated with inflammation and extracellular matrix remodeling in monocytes, macrophages and dendritic cells derived from THP-1. SAA1 is a trigger of sterile inflammation of the fetal membranes at parturition.

Identifiants

pubmed: 36879064
doi: 10.1007/s00011-023-01713-3
pii: 10.1007/s00011-023-01713-3
doi:

Substances chimiques

Culture Media, Conditioned 0
Chemokines 0
Serum Amyloid A Protein 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

797-812

Subventions

Organisme : National Natural Science Foundation of China
ID : 81830042
Organisme : National Key Research and Development Program of China
ID : 2022YFC2704602
Organisme : Innovative Research Team of High-level Local Universities in Shanghai
ID : SHSMU-ZLCX20210201

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.

Références

Challis JR, Lockwood CJ, Myatt L, Norman JE, Strauss JF 3rd, Petraglia F. Inflammation and pregnancy. Reprod Sci. 2009;16(2):206–15. https://doi.org/10.1177/1933719108329095 .
doi: 10.1177/1933719108329095 pubmed: 19208789
Romero R, Espinoza J, Goncalves LF, Kusanovic JP, Friel LA, Nien JK. Inflammation in preterm and term labour and delivery. Semin Fetal Neonatal Med. 2006;11(5):317–26. https://doi.org/10.1016/j.siny.2006.05.001 .
doi: 10.1016/j.siny.2006.05.001 pubmed: 16839830 pmcid: 8315239
Romero R, Espinoza J, Kusanovic JP, Gotsch F, Hassan S, Erez O, et al. The preterm parturition syndrome. BJOG. 2006;113:17–42. https://doi.org/10.1111/j.1471-0528.2006.01120.x .
doi: 10.1111/j.1471-0528.2006.01120.x pubmed: 17206962 pmcid: 7062298
Bukowski R, Sadovsky Y, Goodarzi H, Zhang H, Biggio JR, Varner M, et al. Onset of human preterm and term birth is related to unique inflammatory transcriptome profiles at the maternal fetal interface. PeerJ. 2017;5:e3685. https://doi.org/10.7717/peerj.3685
Rock KL, Latz E, Ontiveros F, Kono H. The sterile inflammatory response. Annu Rev Immunol. 2010;28:321–42. https://doi.org/10.1146/annurev-immunol-030409-101311 .
doi: 10.1146/annurev-immunol-030409-101311 pubmed: 20307211 pmcid: 4315152
Shen H, Kreisel D, Goldstein DR. Processes of sterile inflammation. J Immunol. 2013;191(6):2857–63. https://doi.org/10.4049/jimmunol.1301539 .
doi: 10.4049/jimmunol.1301539 pubmed: 24014880
Keelan JA, Blumenstein M, Helliwell RJ, Sato TA, Marvin KW, Mitchell MD. Cytokines, prostaglandins and parturition–a review. Placenta. 2003;24:S33-46. https://doi.org/10.1053/plac.2002.0948 .
doi: 10.1053/plac.2002.0948 pubmed: 12842412
Blencowe H, Cousens S, Oestergaard MZ, Chou D, Moller A-B, Narwal R, et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. The Lancet. 2012;379(9832):2162–72. https://doi.org/10.1016/s0140-6736(12)60820-4 .
doi: 10.1016/s0140-6736(12)60820-4
Liu L, Oza S, Hogan D, Chu Y, Perin J, Zhu J, et al. Global, regional, and national causes of under-5 mortality in 2000–15: an updated systematic analysis with implications for the Sustainable Development Goals. The Lancet. 2016;388(10063):3027–35. https://doi.org/10.1016/s0140-6736(16)31593-8 .
doi: 10.1016/s0140-6736(16)31593-8
Romero R, Miranda J, Chaiworapongsa T, Korzeniewski SJ, Chaemsaithong P, Gotsch F, et al. Prevalence and clinical significance of sterile intra-amniotic inflammation in patients with preterm labor and intact membranes. Am J Reprod Immunol. 2014;72(5):458–74. https://doi.org/10.1111/aji.12296
doi: 10.1111/aji.12296 pubmed: 25078709 pmcid: 4192099
Marcellin L, Schmitz T, Messaoudene M, Chader D, Parizot C, Jacques S, et al. Immune modifications in fetal membranes overlying the cervix precede parturition in humans. J Immunol. 2017;198(3):1345–56. https://doi.org/10.4049/jimmunol.1601482 .
doi: 10.4049/jimmunol.1601482 pubmed: 28031337
Menon R, Nicolau NN, Bredson S, Polettini J. Fetal membranes: Potential Source of Preterm Birth Biomarkers. General Methods in Biomarker Research and their Applications 2014. p. 1–35
Czikk MJ, McCarthy FP, Murphy KE. Chorioamnionitis: from pathogenesis to treatment. Clin Microbiol Infect. 2011;17(9):1304–11. https://doi.org/10.1111/j.1469-0691.2011.03574.x .
doi: 10.1111/j.1469-0691.2011.03574.x pubmed: 21672080
Menon R, Mesiano S, Taylor RN. Programmed fetal membrane senescence and exosome-mediated signaling: a mechanism associated with timing of human parturition. Front Endocrinol (Lausanne). 2017;8:196. https://doi.org/10.3389/fendo.2017.00196 .
doi: 10.3389/fendo.2017.00196 pubmed: 28861041 pmcid: 5562683
Menon R, Behnia F, Polettini J, Saade GR, Campisi J, Velarde M. Placental membrane aging and HMGB1 signaling associated with human parturition. Aging (Albany NY). 2016;8(2):216–30. https://doi.org/10.18632/aging.100891
Bredeson S, Papaconstantinou J, Deford JH, Kechichian T, Syed TA, Saade GR, et al. HMGB1 promotes a p38MAPK associated non-infectious inflammatory response pathway in human fetal membranes. PLoS One. 2014;9(12):e113799. https://doi.org/10.1371/journal.pone.0113799
Sun L, Ye RD. Serum amyloid A1: Structure, function and gene polymorphism. Gene. 2016;583(1):48–57. https://doi.org/10.1016/j.gene.2016.02.044 .
doi: 10.1016/j.gene.2016.02.044 pubmed: 26945629 pmcid: 5683722
Maury CP, Ehnholm C, Lukka M. Serum amyloid A protein (SAA) subtypes in acute and chronic inflammatory conditions. Ann Rheum Dis. 1985;44(10):711–5. https://doi.org/10.1136/ard.44.10.711 .
doi: 10.1136/ard.44.10.711 pubmed: 3931569 pmcid: 1001749
Ye RD, Sun L. Emerging functions of serum amyloid A in inflammation. J Leukoc Biol. 2015;98(6):923–9. https://doi.org/10.1189/jlb.3VMR0315-080R .
doi: 10.1189/jlb.3VMR0315-080R pubmed: 26130702 pmcid: 6608020
Lin YK, Zhu P, Wang WS, Sun K. Serum amyloid A, a host-derived DAMP in pregnancy? Front Immunol. 2022;13:978929. https://doi.org/10.3389/fimmu.2022.978929
Sack GH Jr. Serum amyloid A: a review. Mol Med. 2018;24(1):46. https://doi.org/10.1186/s10020-018-0047-0 .
doi: 10.1186/s10020-018-0047-0 pubmed: 30165816 pmcid: 6117975
Smole U, Gour N, Phelan J, Hofer G, Kohler C, Kratzer B, et al. Serum amyloid A is a soluble pattern recognition receptor that drives type 2 immunity. Nat Immunol. 2020;21(7):756–65. https://doi.org/10.1038/s41590-020-0698-1 .
doi: 10.1038/s41590-020-0698-1 pubmed: 32572240 pmcid: 9291269
Badolato R, Wang JM, Murphy WJ, Lloyd AR, Michiel DF, Bausserman LL, et al. Serum amyloid A is a chemoattractant: induction of migration, adhesion, and tissue infiltration of monocytes and polymorphonuclear leukocytes. J Exp Med. 1994;180(1):203–9. https://doi.org/10.1084/jem.180.1.203 .
doi: 10.1084/jem.180.1.203 pubmed: 7516407
Urieli-Shoval S, Cohen P, Eisenberg S, Matzner Y. Widespread expression of serum amyloid A in histologically normal human tissues. Predominant localization to the epithelium. J Histochem Cytochem. 1998;46(12):1377–84. https://doi.org/10.1177/002215549804601206 .
doi: 10.1177/002215549804601206 pubmed: 9815279
Sandri S, Urban Borbely A, Fernandes I, de Oliveira EM, Knebel FH, Ruano R, et al. Serum amyloid A in the placenta and its role in trophoblast invasion. PLoS One. 2014;9(3):e90881. DOI: https://doi.org/10.1371/journal.pone.00908811
Li W, Wang W, Zuo R, Liu C, Shu Q, Ying H, et al. Induction of pro-inflammatory genes by serum amyloid A1 in human amnion fibroblasts. Sci Rep. 2017;7(1):693. https://doi.org/10.1038/s41598-017-00782-9 .
doi: 10.1038/s41598-017-00782-9 pubmed: 28386088 pmcid: 5429602
Gan XW, Wang WS, Lu JW, Ling LJ, Zhou Q, Zhang HJ, et al. De novo synthesis of SAA1 in the placenta participates in parturition. Front Immunol. 2020;11:1038. https://doi.org/10.3389/fimmu.2020.01038 .
doi: 10.3389/fimmu.2020.01038 pubmed: 32582166 pmcid: 7297131
Jiang Y, Pin L, Shi W, Huang Q, Wang L, Liu H. SAA1 regulates pro-labour mediators in term labour by activating YAP pathway. Mol Cell Biochem. 2021;476(7):2791–801. https://doi.org/10.1007/s11010-021-04125-1 .
doi: 10.1007/s11010-021-04125-1 pubmed: 33719002
Jutila MA. Leukocyte traffic to sites of inflammation. APMIS. 1992;100(3):191–201. https://doi.org/10.1111/j.1699-0463.1992.tb00861.x .
doi: 10.1111/j.1699-0463.1992.tb00861.x pubmed: 1373285
Nourshargh S, Alon R. Leukocyte migration into inflamed tissues. Immunity. 2014;41(5):694–707. https://doi.org/10.1016/j.immuni.2014.10.008 .
doi: 10.1016/j.immuni.2014.10.008 pubmed: 25517612
Wang W, Chen ZJ, Myatt L, Sun K. 11beta-HSD1 in human fetal membranes as a potential therapeutic target for preterm birth. Endocr Rev. 2018;39(3):241–60. https://doi.org/10.1210/er.2017-00188 .
doi: 10.1210/er.2017-00188 pubmed: 29385440
Menon R, Bonney EA, Condon J, Mesiano S, Taylor RN. Novel concepts on pregnancy clocks and alarms: redundancy and synergy in human parturition. Hum Reprod Update. 2016;22(5):535–60. https://doi.org/10.1093/humupd/dmw022 .
doi: 10.1093/humupd/dmw022 pubmed: 27363410 pmcid: 5001499
Parry S, Strauss JF 3rd. Premature rupture of the fetal membranes. N Engl J Med. 1998;338(10):663–70. https://doi.org/10.1056/NEJM199803053381006 .
doi: 10.1056/NEJM199803053381006 pubmed: 9486996
Chen M, Zhou H, Cheng N, Qian F, Ye RD. Serum amyloid A1 isoforms display different efficacy at Toll-like receptor 2 and formyl peptide receptor 2. Immunobiology. 2014;219(12):916–23. https://doi.org/10.1016/j.imbio.2014.08.002 .
doi: 10.1016/j.imbio.2014.08.002 pubmed: 25154907 pmcid: 4252704
Ebert R, Benisch P, Krug M, Zeck S, Meissner-Weigl J, Steinert A, et al. Acute phase serum amyloid A induces proinflammatory cytokines and mineralization via toll-like receptor 4 in mesenchymal stem cells. Stem Cell Res. 2015;15(1):231–9. https://doi.org/10.1016/j.scr.2015.06.008 .
doi: 10.1016/j.scr.2015.06.008 pubmed: 26135899
Dudley D, Hunter C, Mitchell M, Varner M. Elevations of amniotic fluid macrophage inflammatory protein-1α concentrations in women during term and preterm labor. Obstetrics Gynecology. 1996;87(1):94–8. https://doi.org/10.1016/0029-7844(95)00366-5 .
doi: 10.1016/0029-7844(95)00366-5 pubmed: 8532275
Mittal P, Romero R, Kusanovic JP, Edwin SS, Gotsch F, Mazaki-Tovi S, et al. CXCL6 (granulocyte chemotactic protein-2): a novel chemokine involved in the innate immune response of the amniotic cavity. Am J Reprod Immunol. 2008;60(3):246–57. https://doi.org/10.1111/j.1600-0897.2008.00620.x .
doi: 10.1111/j.1600-0897.2008.00620.x pubmed: 18782286 pmcid: 2577773
Hamill N, Romero R, Gotsch F, Kusanovic JP, Edwin S, Erez O, et al. Exodus-1 (CCL20): evidence for the participation of this chemokine in spontaneous labor at term, preterm labor, and intrauterine infection. J Perinat Med. 2008;36(3):217–27. https://doi.org/10.1515/JPM.2008.034 .
doi: 10.1515/JPM.2008.034 pubmed: 18576931 pmcid: 3182481
Wang YW, Wang WS, Wang LY, Bao YR, Lu JW, Lu Y, et al. Extracellular matrix remodeling effects of serum amyloid A1 in the human amnion: Implications for fetal membrane rupture. Am J Reprod Immunol. 2019;81(1):e13073. https://doi.org/10.1111/aji.13073
Wang WS, Li WJ, Wang YW, Wang LY, Mi YB, Lu JW, et al. Involvement of serum amyloid A1 in the rupture of fetal membranes through induction of collagen I degradation. Clin Sci (Lond). 2019;133(3):515–30. https://doi.org/10.1042/CS20180950 .
doi: 10.1042/CS20180950 pubmed: 30683734
Lu Y, Zhou Q, Lu JW, Wang WS, Sun K. Involvement of STAT3 in the synergistic induction of 11beta-HSD1 by SAA1 and cortisol in human amnion fibroblasts. Am J Reprod Immunol. 2019;82(2):e13150. https://doi.org/10.1111/aji.13150
Lu Y, Wang WS, Lin YK, Lu JW, Li WJ, Zhang CY, et al. Enhancement of cortisol-induced SAA1 transcription by SAA1 in the human amnion. J Mol Endocrinol. 2019;62(4):149–58. https://doi.org/10.1530/JME-18-0263 .
doi: 10.1530/JME-18-0263 pubmed: 30817315
Wang WS, Guo CM, Sun K. Cortisol regeneration in the fetal membranes, a coincidental or requisite event in human parturition? Front Physiol. 2020;11:462. https://doi.org/10.3389/fphys.2020.00462 .
doi: 10.3389/fphys.2020.00462 pubmed: 32523541 pmcid: 7261858
Houser BL. Decidual macrophages and their roles at the maternal-fetal interface. Yale J Biol Med. 2012;85(1):105–18.
pubmed: 22461749 pmcid: 3313525
Gomez-Lopez N, Vadillo-Perez L, Nessim S, Olson DM, Vadillo-Ortega F. Choriodecidua and amnion exhibit selective leukocyte chemotaxis during term human labor. Am J Obstet Gynecol. 2011;204(4):364 e9–16. https://doi.org/10.1016/j.ajog.2010.11.010
Wang WS, Lin YK, Zhang F, Lei WJ, Pan F, Zhu YN, et al. Single cell transcriptomic analysis of human amnion identifies cell-specific signatures associated with membrane rupture and parturition. Cell Biosci. 2022;12(1):64. https://doi.org/10.1186/s13578-022-00797-4 .
doi: 10.1186/s13578-022-00797-4 pubmed: 35585644 pmcid: 9118831
Spiering MJ. Primer on the Immune System. Alcohol Res. 2015;37(2):171–5.
pubmed: 26695756 pmcid: 4590614
Palucka K, Banchereau J. Dendritic cells: a link between innate and adaptive immunity. J Clin Immunol. 1999;19(1):12–25. https://doi.org/10.1023/a:1020558317162 .
doi: 10.1023/a:1020558317162 pubmed: 10080101
Wei R, Lai N, Zhao L, Zhang Z, Zhu X, Guo Q, et al. Dendritic cells in pregnancy and pregnancy-associated diseases. Biomed Pharmacother. 2021;133:110921. https://doi.org/10.1016/j.biopha.2020.110921
Kwiatek M, Geca T, Krzyzanowski A, Malec A, Kwasniewska A. Peripheral Dendritic Cells and CD4+CD25+Foxp3+ Regulatory T Cells in the First Trimester of Normal Pregnancy and in Women with Recurrent Miscarriage. PLoS One. 2015;10(5):e0124747. https://doi.org/10.1371/journal.pone.0124747
Askelund K, Liddell HS, Zanderigo AM, Fernando NS, Khong TY, Stone PR, et al. CD83+dendritic cells in the decidua of women with recurrent miscarriage and normal pregnancy. Placenta. 2004;25(2–3):140–5. https://doi.org/10.1016/s0143-4004(03)00182-6 .
doi: 10.1016/s0143-4004(03)00182-6 pubmed: 14972446
Bizargity P, Del Rio R, Phillippe M, Teuscher C, Bonney EA. Resistance to lipopolysaccharide-induced preterm delivery mediated by regulatory T cell function in mice. Biol Reprod. 2009;80(5):874–81. https://doi.org/10.1095/biolreprod.108.074294 .
doi: 10.1095/biolreprod.108.074294 pubmed: 19144956 pmcid: 2804837
De Buck M, Berghmans N, Portner N, Vanbrabant L, Cockx M, Struyf S, et al. Serum amyloid A1alpha induces paracrine IL-8/CXCL8 via TLR2 and directly synergizes with this chemokine via CXCR2 and formyl peptide receptor 2 to recruit neutrophils. J Leukoc Biol. 2015;98(6):1049–60. https://doi.org/10.1189/jlb.3A0315-085R .
doi: 10.1189/jlb.3A0315-085R pubmed: 26297794
Badolato R, Johnston JA, Wang JM, McVicar D, Xu LL, Oppenheim JJ, et al. Serum amyloid A induces calcium mobilization and chemotaxis of human monocytes by activating a pertussis toxin-sensitive signaling pathway. J Immunol. 1995;155(8):4004–10.
doi: 10.4049/jimmunol.155.8.4004 pubmed: 7561109
Xu L, Badolato R, Murphy WJ, Longo DL, Anver M, Hale S, et al. A novel biologic function of serum amyloid A. Induction of T lymphocyte migration and adhesion. J Immunol. 1995;155(3):1184–90.
doi: 10.4049/jimmunol.155.3.1184 pubmed: 7636186
Firmal P, Shah VK, Chattopadhyay S. Insight into TLR4-mediated immunomodulation in normal pregnancy and related disorders. Front Immunol. 2020;11:807. https://doi.org/10.3389/fimmu.2020.00807 .
doi: 10.3389/fimmu.2020.00807 pubmed: 32508811 pmcid: 7248557
Roh JS, Sohn DH. Damage-Associated Molecular Patterns in Inflammatory Diseases. Immune Netw. 2018;18(4):e27. https://doi.org/10.4110/in.2018.18.e27
Chen G, Wang X, Liao Q, Ge Y, Jiao H, Chen Q, et al. Structural basis for recognition of N-formyl peptides as pathogen-associated molecular patterns. Nat Commun. 2022;13(1):5232. https://doi.org/10.1038/s41467-022-32822-y .
doi: 10.1038/s41467-022-32822-y pubmed: 36064945 pmcid: 9445081
Wang W, Guo C, Zhu P, Lu J, Li W, Liu C, et al. Phosphorylation of STAT3 mediates the induction of cyclooxygenase-2 by cortisol in the human amnion at parturition. Sci Signal. 2015;8(400):ra106. https://doi.org/10.1126/scisignal.aac6151
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357–60. https://doi.org/10.1038/nmeth.3317 .
doi: 10.1038/nmeth.3317 pubmed: 25751142 pmcid: 4655817
Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–7. https://doi.org/10.1089/omi.2011.0118 .
doi: 10.1089/omi.2011.0118 pubmed: 22455463 pmcid: 3339379
Lu JW, Wang WS, Zhou Q, Ling LJ, Ying H, Sun Y, et al. C/EBPdelta drives key endocrine signals in the human amnion at parturition. Clin Transl Med. 2021;11(6):e416. https://doi.org/10.1002/ctm2.416
Chanput W, Peters V, Wichers H. THP-1 and U937 Cells. In: Verhoeckx K, Cotter P, López-Expósito I, Kleiveland C, Lea T, Mackie A, et al., eds. The Impact of Food Bioactives on Health: in vitro and ex vivo models. Cham (CH): Springer, Copyright 2015, The Author(s). 2015. p. 147–59
Berges C, Naujokat C, Tinapp S, Wieczorek H, Hoh A, Sadeghi M, et al. A cell line model for the differentiation of human dendritic cells. Biochem Biophys Res Commun. 2005;333(3):896–907. https://doi.org/10.1016/j.bbrc.2005.05.171 .
doi: 10.1016/j.bbrc.2005.05.171 pubmed: 15963458
Sapudom J, Alatoom A, Mohamed WKE, Garcia-Sabate A, McBain I, Nasser RA, et al. Dendritic cell immune potency on 2D and in 3D collagen matrices. Biomater Sci. 2020;8(18):5106–20. https://doi.org/10.1039/d0bm01141j .
doi: 10.1039/d0bm01141j pubmed: 32812979
Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41(1):14–20. https://doi.org/10.1016/j.immuni.2014.06.008 .
doi: 10.1016/j.immuni.2014.06.008 pubmed: 25035950 pmcid: 4123412
Bertani FR, Mozetic P, Fioramonti M, Iuliani M, Ribelli G, Pantano F, et al. Classification of M1/M2-polarized human macrophages by label-free hyperspectral reflectance confocal microscopy and multivariate analysis. Sci Rep. 2017;7(1):8965. https://doi.org/10.1038/s41598-017-08121-8 .
doi: 10.1038/s41598-017-08121-8 pubmed: 28827726 pmcid: 5566322
Hammer GE, Ma A. Molecular control of steady-state dendritic cell maturation and immune homeostasis. Annu Rev Immunol. 2013;31:743–91. https://doi.org/10.1146/annurev-immunol-020711-074929 .
doi: 10.1146/annurev-immunol-020711-074929 pubmed: 23330953 pmcid: 4091962

Auteurs

Yi-Kai Lin (YK)

Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong university, Shanghai, People's Republic of China.
Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China.

Fan Zhang (F)

Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong university, Shanghai, People's Republic of China.
Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China.

Wen-Jia Lei (WJ)

Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong university, Shanghai, People's Republic of China.
Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China.

Xiao-Wen Gan (XW)

Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong university, Shanghai, People's Republic of China.
Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China.

Meng-Die Li (MD)

Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong university, Shanghai, People's Republic of China.
Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China.

Fan Pan (F)

Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong university, Shanghai, People's Republic of China.
Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China.

Wang-Sheng Wang (WS)

Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong university, Shanghai, People's Republic of China. wangsheng_wang@hotmail.com.
Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China. wangsheng_wang@hotmail.com.

Kang Sun (K)

Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong university, Shanghai, People's Republic of China. sungangrenji@hotmail.com.
Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China. sungangrenji@hotmail.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH