Strong coupling between a photon and a hole spin in silicon.
Journal
Nature nanotechnology
ISSN: 1748-3395
Titre abrégé: Nat Nanotechnol
Pays: England
ID NLM: 101283273
Informations de publication
Date de publication:
Jul 2023
Jul 2023
Historique:
received:
13
07
2022
accepted:
24
01
2023
medline:
7
3
2023
pubmed:
7
3
2023
entrez:
6
3
2023
Statut:
ppublish
Résumé
Spins in semiconductor quantum dots constitute a promising platform for scalable quantum information processing. Coupling them strongly to the photonic modes of superconducting microwave resonators would enable fast non-demolition readout and long-range, on-chip connectivity, well beyond nearest-neighbour quantum interactions. Here we demonstrate strong coupling between a microwave photon in a superconducting resonator and a hole spin in a silicon-based double quantum dot issued from a foundry-compatible metal-oxide-semiconductor fabrication process. By leveraging the strong spin-orbit interaction intrinsically present in the valence band of silicon, we achieve a spin-photon coupling rate as high as 330 MHz, largely exceeding the combined spin-photon decoherence rate. This result, together with the recently demonstrated long coherence of hole spins in silicon, opens a new realistic pathway to the development of circuit quantum electrodynamics with spins in semiconductor quantum dots.
Identifiants
pubmed: 36879125
doi: 10.1038/s41565-023-01332-3
pii: 10.1038/s41565-023-01332-3
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
741-746Subventions
Organisme : Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
ID : P2BSP2 184387)
Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
ID : 759388
Organisme : EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
ID : 759388
Organisme : EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
ID : 810504
Organisme : EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
ID : 951852
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Haroche, S. and Raimond, J.-M. Exploring the Quantum: Atoms, Cavities, and Photons (Oxford Univ. Press, 2006).
Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004).
doi: 10.1038/nature02851
Blais, A., Huang, R.-S., Wallraff, A., Girvin, S. M. & Schoelkopf, R. J. Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004).
doi: 10.1103/PhysRevA.69.062320
Blais, A., Grimsmo, A. L., Girvin, S. & Wallraff, A. Circuit quantum electrodynamics. Rev. Mod. Phys. 93, 025005 (2021).
doi: 10.1103/RevModPhys.93.025005
Clerk, A. A., Lehnert, K. W., Bertet, P., Petta, J. R. & Nakamura, Y. Hybrid quantum systems with circuit quantum electrodynamics. Nat. Phys. 16, 257–267 (2020).
doi: 10.1038/s41567-020-0797-9
Childress, L., Sørensen, A. S. & Lukin, M. D. Mesoscopic cavity quantum electrodynamics with quantum dots. Phys. Rev. A 69, 042302 (2004).
doi: 10.1103/PhysRevA.69.042302
Burkard, G. & Imamoglu, A. Ultra-long-distance interaction between spin qubits. Phys. Rev. B 74, 041307(R) (2006).
doi: 10.1103/PhysRevB.74.041307
Hu, X., xi Liu, Y. & Nori, F. Strong coupling of a spin qubit to a superconducting stripline cavity. Phys. Rev. B 86, 035314 (2012).
doi: 10.1103/PhysRevB.86.035314
Jin, P. Q., Marthaler, M., Shnirman, A. & Schön, G. Strong coupling of spin qubits to a transmission line resonator. Phys. Rev. Lett. 108, 190506 (2012).
doi: 10.1103/PhysRevLett.108.190506
Frey, T. et al. Dipole coupling of a double quantum dot to a microwave resonator. Phys. Rev. Lett. 108, 046807 (2012).
doi: 10.1103/PhysRevLett.108.046807
Petersson, K. D. et al. Circuit quantum electrodynamics with a spin qubit. Nature 490, 380–383 (2012).
doi: 10.1038/nature11559
Viennot, J. J., Dartiailh, M. C., Cottet, A. & Kontos, T. Coherent coupling of a single spin to microwave cavity photons. Science 349, 408–411 (2015).
doi: 10.1126/science.aaa3786
Burkard, G., Ladd, T. D., Nichol, J. M., Pan, A., and Petta, J. R. Semiconductor spin qubits. Preprint at https://arxiv.org/abs/2112.08863 (2021).
Imamoglu, A. et al. Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204 (1999).
doi: 10.1103/PhysRevLett.83.4204
Vandersypen, L. M. K. et al. Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent. npj Quantum Inf. 3, 34 (2017).
doi: 10.1038/s41534-017-0038-y
Samkharadze, N. et al. Strong spin-photon coupling in silicon. Science 359, 1123–1127 (2018).
doi: 10.1126/science.aar4054
Mi, X. et al. A coherent spin–photon interface in silicon. Nature 555, 599–603 (2018).
doi: 10.1038/nature25769
Borjans, F., Croot, X. G., Mi, X., Gullans, M. J. & Petta, J. R. Resonant microwave-mediated interactions between distant electron spins. Nature 577, 195–198 (2019).
Harvey-Collard, P. et al. Coherent spin-spin coupling mediated by virtual microwave photons. Phys. Rev. X 12, 021026 (2022).
Luttinger, J. M. & Kohn, W. Motion of electrons and holes in perturbed periodic fields. Phys. Rev. 97, 869 (1955).
doi: 10.1103/PhysRev.97.869
Winkler, R. Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Springer, 2003).
Kloeffel, C., Trif, M., Stano, P. & Loss, D. Circuit QED with hole-spin qubits in Ge/Si nanowire quantum dots. Phys. Rev. B 88, 241405 (2013).
doi: 10.1103/PhysRevB.88.241405
Nigg, S. E., Fuhrer, A. & Loss, D. Superconducting grid-bus surface code architecture for hole-spin qubits. Phys. Rev. Lett. 118, 147701 (2017).
doi: 10.1103/PhysRevLett.118.147701
Mutter, P. M. & Burkard, G. Natural heavy-hole flopping mode qubit in germanium. Phys. Rev. Research 3, 013194 (2021).
doi: 10.1103/PhysRevResearch.3.013194
Michal, V. P. et al. Tunable hole spin-photon interaction based on g-matrix modulation. Phys. Rev. B 107, L041303 (2023).
doi: 10.1103/PhysRevB.107.L041303
Bosco, S., Scarlino, P., Klinovaja, J. & Loss, D. Fully tunable longitudinal spin-photon interactions in Si and Ge quantum dots. Phys. Rev. Lett. 129, 066801 (2022).
doi: 10.1103/PhysRevLett.129.066801
Kloeffel, C., Rančić, M. J. & Loss, D. Direct Rashba spin-orbit interaction in Si and Ge nanowires with different growth directions. Phys. Rev. B 97, 235422 (2018).
doi: 10.1103/PhysRevB.97.235422
Niepce, D., Burnett, J. & Bylander, J. High kinetic inductance NbN nanowire superinductors. Phys. Rev. Appl. 11, 044014 (2019).
doi: 10.1103/PhysRevApplied.11.044014
Yu, C. X. et al. Magnetic field resilient high kinetic inductance superconducting niobium nitride coplanar waveguide resonators. Appl. Phys. Lett. 118, 054001 (2021).
doi: 10.1063/5.0039945
Gorman, J., Hasko, D. G. & Williams, D. A. Charge-qubit operation of an isolated double quantum dot. Phys. Rev. Lett. 95, 090502 (2005).
doi: 10.1103/PhysRevLett.95.090502
Crippa, A. et al. Electrical spin driving by g-matrix modulation in spin-orbit qubits. Phys. Rev. Lett. 120, 137702 (2018).
doi: 10.1103/PhysRevLett.120.137702
Fischer, J., Coish, W., Bulaev, D. & Loss, D. Spin decoherence of a heavy hole coupled to nuclear spins in a quantum dot. Phys. Rev. B 78, 155329 (2008).
doi: 10.1103/PhysRevB.78.155329
Piot, N. et al. A single hole spin with enhanced coherence in natural silicon. Nat. Nanotechnol. 17, 1072 (2022).
doi: 10.1038/s41565-022-01196-z
Li, J., Venitucci, B. & Niquet, Y.-M. Hole-phonon interactions in quantum dots: effects of phonon confinement and encapsulation materials on spin-orbit qubits. Phys. Rev. B 102, 075415 (2020).
doi: 10.1103/PhysRevB.102.075415
Benito, M., Mi, X., Taylor, J. M., Petta, J. R. & Burkard, G. Input-output theory for spin-photon coupling in Si double quantum dots. Phys. Rev. B 96, 235434 (2017).
doi: 10.1103/PhysRevB.96.235434
Mi, X. et al. Circuit quantum electrodynamics architecture for gate-defined quantum dots in silicon. Appl. Phys. Lett. 110, 043502 (2017).
doi: 10.1063/1.4974536
Harvey-Collard, P. et al. On-chip microwave filters for high-impedance resonators with gate-defined quantum dots. Phys. Rev. Appl. 14, 034025 (2020).
doi: 10.1103/PhysRevApplied.14.034025
Benito, M., Petta, J. R. & Burkard, G. Optimized cavity-mediated dispersive two-qubit gates between spin qubits. Phys. Rev. B 100, 081412 (2019).
doi: 10.1103/PhysRevB.100.081412