Strong coupling between a photon and a hole spin in silicon.


Journal

Nature nanotechnology
ISSN: 1748-3395
Titre abrégé: Nat Nanotechnol
Pays: England
ID NLM: 101283273

Informations de publication

Date de publication:
Jul 2023
Historique:
received: 13 07 2022
accepted: 24 01 2023
medline: 7 3 2023
pubmed: 7 3 2023
entrez: 6 3 2023
Statut: ppublish

Résumé

Spins in semiconductor quantum dots constitute a promising platform for scalable quantum information processing. Coupling them strongly to the photonic modes of superconducting microwave resonators would enable fast non-demolition readout and long-range, on-chip connectivity, well beyond nearest-neighbour quantum interactions. Here we demonstrate strong coupling between a microwave photon in a superconducting resonator and a hole spin in a silicon-based double quantum dot issued from a foundry-compatible metal-oxide-semiconductor fabrication process. By leveraging the strong spin-orbit interaction intrinsically present in the valence band of silicon, we achieve a spin-photon coupling rate as high as 330 MHz, largely exceeding the combined spin-photon decoherence rate. This result, together with the recently demonstrated long coherence of hole spins in silicon, opens a new realistic pathway to the development of circuit quantum electrodynamics with spins in semiconductor quantum dots.

Identifiants

pubmed: 36879125
doi: 10.1038/s41565-023-01332-3
pii: 10.1038/s41565-023-01332-3
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

741-746

Subventions

Organisme : Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
ID : P2BSP2 184387)
Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
ID : 759388
Organisme : EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
ID : 759388
Organisme : EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
ID : 810504
Organisme : EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
ID : 951852

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Haroche, S. and Raimond, J.-M. Exploring the Quantum: Atoms, Cavities, and Photons (Oxford Univ. Press, 2006).
Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004).
doi: 10.1038/nature02851
Blais, A., Huang, R.-S., Wallraff, A., Girvin, S. M. & Schoelkopf, R. J. Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004).
doi: 10.1103/PhysRevA.69.062320
Blais, A., Grimsmo, A. L., Girvin, S. & Wallraff, A. Circuit quantum electrodynamics. Rev. Mod. Phys. 93, 025005 (2021).
doi: 10.1103/RevModPhys.93.025005
Clerk, A. A., Lehnert, K. W., Bertet, P., Petta, J. R. & Nakamura, Y. Hybrid quantum systems with circuit quantum electrodynamics. Nat. Phys. 16, 257–267 (2020).
doi: 10.1038/s41567-020-0797-9
Childress, L., Sørensen, A. S. & Lukin, M. D. Mesoscopic cavity quantum electrodynamics with quantum dots. Phys. Rev. A 69, 042302 (2004).
doi: 10.1103/PhysRevA.69.042302
Burkard, G. & Imamoglu, A. Ultra-long-distance interaction between spin qubits. Phys. Rev. B 74, 041307(R) (2006).
doi: 10.1103/PhysRevB.74.041307
Hu, X., xi Liu, Y. & Nori, F. Strong coupling of a spin qubit to a superconducting stripline cavity. Phys. Rev. B 86, 035314 (2012).
doi: 10.1103/PhysRevB.86.035314
Jin, P. Q., Marthaler, M., Shnirman, A. & Schön, G. Strong coupling of spin qubits to a transmission line resonator. Phys. Rev. Lett. 108, 190506 (2012).
doi: 10.1103/PhysRevLett.108.190506
Frey, T. et al. Dipole coupling of a double quantum dot to a microwave resonator. Phys. Rev. Lett. 108, 046807 (2012).
doi: 10.1103/PhysRevLett.108.046807
Petersson, K. D. et al. Circuit quantum electrodynamics with a spin qubit. Nature 490, 380–383 (2012).
doi: 10.1038/nature11559
Viennot, J. J., Dartiailh, M. C., Cottet, A. & Kontos, T. Coherent coupling of a single spin to microwave cavity photons. Science 349, 408–411 (2015).
doi: 10.1126/science.aaa3786
Burkard, G., Ladd, T. D., Nichol, J. M., Pan, A., and Petta, J. R. Semiconductor spin qubits. Preprint at https://arxiv.org/abs/2112.08863 (2021).
Imamoglu, A. et al. Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204 (1999).
doi: 10.1103/PhysRevLett.83.4204
Vandersypen, L. M. K. et al. Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent. npj Quantum Inf. 3, 34 (2017).
doi: 10.1038/s41534-017-0038-y
Samkharadze, N. et al. Strong spin-photon coupling in silicon. Science 359, 1123–1127 (2018).
doi: 10.1126/science.aar4054
Mi, X. et al. A coherent spin–photon interface in silicon. Nature 555, 599–603 (2018).
doi: 10.1038/nature25769
Borjans, F., Croot, X. G., Mi, X., Gullans, M. J. & Petta, J. R. Resonant microwave-mediated interactions between distant electron spins. Nature 577, 195–198 (2019).
Harvey-Collard, P. et al. Coherent spin-spin coupling mediated by virtual microwave photons. Phys. Rev. X 12, 021026 (2022).
Luttinger, J. M. & Kohn, W. Motion of electrons and holes in perturbed periodic fields. Phys. Rev. 97, 869 (1955).
doi: 10.1103/PhysRev.97.869
Winkler, R. Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Springer, 2003).
Kloeffel, C., Trif, M., Stano, P. & Loss, D. Circuit QED with hole-spin qubits in Ge/Si nanowire quantum dots. Phys. Rev. B 88, 241405 (2013).
doi: 10.1103/PhysRevB.88.241405
Nigg, S. E., Fuhrer, A. & Loss, D. Superconducting grid-bus surface code architecture for hole-spin qubits. Phys. Rev. Lett. 118, 147701 (2017).
doi: 10.1103/PhysRevLett.118.147701
Mutter, P. M. & Burkard, G. Natural heavy-hole flopping mode qubit in germanium. Phys. Rev. Research 3, 013194 (2021).
doi: 10.1103/PhysRevResearch.3.013194
Michal, V. P. et al. Tunable hole spin-photon interaction based on g-matrix modulation. Phys. Rev. B 107, L041303 (2023).
doi: 10.1103/PhysRevB.107.L041303
Bosco, S., Scarlino, P., Klinovaja, J. & Loss, D. Fully tunable longitudinal spin-photon interactions in Si and Ge quantum dots. Phys. Rev. Lett. 129, 066801 (2022).
doi: 10.1103/PhysRevLett.129.066801
Kloeffel, C., Rančić, M. J. & Loss, D. Direct Rashba spin-orbit interaction in Si and Ge nanowires with different growth directions. Phys. Rev. B 97, 235422 (2018).
doi: 10.1103/PhysRevB.97.235422
Niepce, D., Burnett, J. & Bylander, J. High kinetic inductance NbN nanowire superinductors. Phys. Rev. Appl. 11, 044014 (2019).
doi: 10.1103/PhysRevApplied.11.044014
Yu, C. X. et al. Magnetic field resilient high kinetic inductance superconducting niobium nitride coplanar waveguide resonators. Appl. Phys. Lett. 118, 054001 (2021).
doi: 10.1063/5.0039945
Gorman, J., Hasko, D. G. & Williams, D. A. Charge-qubit operation of an isolated double quantum dot. Phys. Rev. Lett. 95, 090502 (2005).
doi: 10.1103/PhysRevLett.95.090502
Crippa, A. et al. Electrical spin driving by g-matrix modulation in spin-orbit qubits. Phys. Rev. Lett. 120, 137702 (2018).
doi: 10.1103/PhysRevLett.120.137702
Fischer, J., Coish, W., Bulaev, D. & Loss, D. Spin decoherence of a heavy hole coupled to nuclear spins in a quantum dot. Phys. Rev. B 78, 155329 (2008).
doi: 10.1103/PhysRevB.78.155329
Piot, N. et al. A single hole spin with enhanced coherence in natural silicon. Nat. Nanotechnol. 17, 1072 (2022).
doi: 10.1038/s41565-022-01196-z
Li, J., Venitucci, B. & Niquet, Y.-M. Hole-phonon interactions in quantum dots: effects of phonon confinement and encapsulation materials on spin-orbit qubits. Phys. Rev. B 102, 075415 (2020).
doi: 10.1103/PhysRevB.102.075415
Benito, M., Mi, X., Taylor, J. M., Petta, J. R. & Burkard, G. Input-output theory for spin-photon coupling in Si double quantum dots. Phys. Rev. B 96, 235434 (2017).
doi: 10.1103/PhysRevB.96.235434
Mi, X. et al. Circuit quantum electrodynamics architecture for gate-defined quantum dots in silicon. Appl. Phys. Lett. 110, 043502 (2017).
doi: 10.1063/1.4974536
Harvey-Collard, P. et al. On-chip microwave filters for high-impedance resonators with gate-defined quantum dots. Phys. Rev. Appl. 14, 034025 (2020).
doi: 10.1103/PhysRevApplied.14.034025
Benito, M., Petta, J. R. & Burkard, G. Optimized cavity-mediated dispersive two-qubit gates between spin qubits. Phys. Rev. B 100, 081412 (2019).
doi: 10.1103/PhysRevB.100.081412

Auteurs

Cécile X Yu (CX)

Univ. Grenoble Alpes, CEA, Grenoble INP, IRIG-Pheliqs, Grenoble, France.

Simon Zihlmann (S)

Univ. Grenoble Alpes, CEA, Grenoble INP, IRIG-Pheliqs, Grenoble, France. simon.zihlmann@cea.fr.

José C Abadillo-Uriel (JC)

Univ. Grenoble Alpes, CEA, IRIG-MEM-L_Sim, Grenoble, France.

Vincent P Michal (VP)

Univ. Grenoble Alpes, CEA, IRIG-MEM-L_Sim, Grenoble, France.

Nils Rambal (N)

Univ. Grenoble Alpes, CEA, LETI, Grenoble, France.

Heimanu Niebojewski (H)

Univ. Grenoble Alpes, CEA, LETI, Grenoble, France.

Thomas Bedecarrats (T)

Univ. Grenoble Alpes, CEA, LETI, Grenoble, France.

Maud Vinet (M)

Univ. Grenoble Alpes, CEA, LETI, Grenoble, France.

Étienne Dumur (É)

Univ. Grenoble Alpes, CEA, Grenoble INP, IRIG-Pheliqs, Grenoble, France.

Michele Filippone (M)

Univ. Grenoble Alpes, CEA, IRIG-MEM-L_Sim, Grenoble, France.

Benoit Bertrand (B)

Univ. Grenoble Alpes, CEA, LETI, Grenoble, France.

Silvano De Franceschi (S)

Univ. Grenoble Alpes, CEA, Grenoble INP, IRIG-Pheliqs, Grenoble, France.

Yann-Michel Niquet (YM)

Univ. Grenoble Alpes, CEA, IRIG-MEM-L_Sim, Grenoble, France.

Romain Maurand (R)

Univ. Grenoble Alpes, CEA, Grenoble INP, IRIG-Pheliqs, Grenoble, France. romain.maurand@cea.fr.

Classifications MeSH