Regenerative potential and limitations in a zebrafish model of hyperglycemia-induced nerve degeneration.
hyperglycemia
perineurial glia
perineurium
peripheral nerve
regeneration
vertebral development
Journal
Developmental dynamics : an official publication of the American Association of Anatomists
ISSN: 1097-0177
Titre abrégé: Dev Dyn
Pays: United States
ID NLM: 9201927
Informations de publication
Date de publication:
06 2023
06 2023
Historique:
revised:
04
02
2023
received:
02
12
2021
accepted:
25
02
2023
medline:
5
6
2023
pubmed:
8
3
2023
entrez:
7
3
2023
Statut:
ppublish
Résumé
Previous work from our lab has described a model of motor nerve degeneration in hyperglycemic zebrafish larvae which resembles mammalian models of diabetic peripheral neuropathy (DPN). Here, we optimized the hyperglycemic-induction protocol, characterized deficits in nerve structure and behavioral function, and then examined the regenerative potential following recovery from the hyperglycemic state. In agreement with our previous work, hyperglycemia induced motor nerve degeneration and behavioral deficits. However, the optimized protocol initiated disruption of tight junctions within the blood-nerve barrier, a phenotype apparent in mammalian models of DPN. Following a 10-day recovery period, regeneration of motor nerve components was apparent, but behavioral deficits persisted. We next examined the effect of hyperglycemia on the musculoskeletal system and found subtle deficits in muscle that resolved following recovery, and robust deficits in the skeletal system which persisted following recovery. Here we optimized our previous model of hyperglycemia-induced motor nerve degeneration to more closely align with that observed in mammalian models and then characterized the regenerative potential following recovery from hyperglycemia. Notably, we observed striking impairments to skeletal development, which underscores the global impact hyperglycemia has across systems, and provides a framework for elucidating molecular mechanisms responsible for regenerative events moving forward.
Sections du résumé
BACKGROUND
Previous work from our lab has described a model of motor nerve degeneration in hyperglycemic zebrafish larvae which resembles mammalian models of diabetic peripheral neuropathy (DPN). Here, we optimized the hyperglycemic-induction protocol, characterized deficits in nerve structure and behavioral function, and then examined the regenerative potential following recovery from the hyperglycemic state.
RESULTS
In agreement with our previous work, hyperglycemia induced motor nerve degeneration and behavioral deficits. However, the optimized protocol initiated disruption of tight junctions within the blood-nerve barrier, a phenotype apparent in mammalian models of DPN. Following a 10-day recovery period, regeneration of motor nerve components was apparent, but behavioral deficits persisted. We next examined the effect of hyperglycemia on the musculoskeletal system and found subtle deficits in muscle that resolved following recovery, and robust deficits in the skeletal system which persisted following recovery.
CONCLUSION
Here we optimized our previous model of hyperglycemia-induced motor nerve degeneration to more closely align with that observed in mammalian models and then characterized the regenerative potential following recovery from hyperglycemia. Notably, we observed striking impairments to skeletal development, which underscores the global impact hyperglycemia has across systems, and provides a framework for elucidating molecular mechanisms responsible for regenerative events moving forward.
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
742-760Informations de copyright
© 2023 American Association for Anatomy.
Références
Giri B, Dey S, Das T, Sarkar M, Banerjee J, Dash SK. Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: An update on glucose toxicity. Biomed Pharmacother. 2018;107:306-328. doi:10.1016/j.biopha.2018.07.157
Ang L, Mizokami-Stout K, Eid SA, et al. The conundrum of diabetic neuropathies-past, present, and future. J Diabetes Complications. 2022;36:108334. doi:10.1016/j.jdiacomp.2022.108334
Kennedy JM, Zochodne DW. Impaired peripheral nerve regeneration in diabetes mellitus. J Peripher Nerv Syst. 2005;10:144-157. doi:10.1111/j.1085-9489.2005.0010205.x
Eames SC, Philipson LH, Prince VE, Kinkel MD. Blood sugar measurement in zebrafish reveals dynamics of glucose homeostasis. Zebrafish. 2010;7:205-213. doi:10.1089/zeb.2009.0640
Jurczyk A, Roy N, Bajwa R, et al. Dynamic glucoregulation and mammalian-like responses to metabolic and developmental disruption in zebrafish. Gen Comp Endocrinol. 2011;170:334-345. doi:10.1016/j.ygcen.2010.10.010
Kimmel RA, Dobler S, Schmitner N, Walsen T, Freudenblum J, Meyer D. Diabetic pdx1-mutant zebrafish show conserved responses to nutrient overload and anti-glycemic treatment. Sci Rep. 2015;5:14241. doi:10.1038/srep14241
Pisharath H, Rhee JM, Swanson MA, Leach SD, Parsons MJ. Targeted ablation of beta cells in the embryonic zebrafish pancreas using E. coli nitroreductase. Mech Dev. 2007;124:218-229. doi:10.1016/j.mod.2006.11.005
Rocker A, Howell J, Voithofer G, Clark JK. Acute effects of hyperglycemia on the peripheral nervous system in zebrafish (Danio rerio) following nitroreductase-mediated β-cell ablation. Am J Physiol-Regul Integr Comp Physiol. 2019;316:R395-R405. doi:10.1152/ajpregu.00258.2018
Ennerfelt H, Voithofer G, Tibbo M, et al. Disruption of peripheral nerve development in a zebrafish model of hyperglycemia. J Neurophysiol. 2019;122:862-871. doi:10.1152/jn.00318.2019
Dyck PJ, Davies JL, Clark VM, et al. Modeling chronic glycemic exposure variables as correlates and predictors of microvascular complications of diabetes. Diabetes Care. 2006;29:2282-2288. doi:10.2337/dc06-0525
Clark JK, O’Keefe A, Mastracci TL, Sussel L, Matise MP, Kucenas S. Mammalian Nkx2.2+ perineurial glia are essential for motor nerve development. Dev Dyn. 2014;243:1116-1129. doi:10.1002/dvdy.24158
Lewis GM, Kucenas S. Perineurial glia are essential for motor axon regrowth following nerve injury. J Neurosci. 2014;34:12762-12777. doi:10.1523/JNEUROSCI.1906-14.2014
Beamish NG, Stolinski C, Thomas PK, King RH. Freeze-fracture observations on normal and abnormal human perineurial tight junctions: alterations in diabetic polyneuropathy. Acta Neuropathol. 1991;81:269-279. doi:10.1007/BF00305868
Ben-Kraiem A, Sauer R-S, Norwig C, et al. Selective blood-nerve barrier leakiness with claudin-1 and vessel-associated macrophage loss in diabetic polyneuropathy. J Mol Med (Berl). 2021;99:1237-1250.
Mazzeo A, Rodolico C, Monici MC, Migliorato A, Aguennouz M, Vita G. Perineurium Talin immunoreactivity decreases in diabetic neuropathy. J Neurol Sci. 1997;146:7-11. doi:10.1016/s0022-510x(96)00285-7
Schiavinato A, Morandin AR, Guidolin D, Lini E, Nunzi MG, Fiori MG. Perineurium of sciatic nerve in normal and diabetic rodents: freeze-fracture study of intercellular junctional complexes. J Neurocytol. 1991;20:459-470. doi:10.1007/BF01252274
Reinhold AK, Rittner HL. Characteristics of the nerve barrier and the blood dorsal root ganglion barrier in health and disease. Exp Neurol. 2020;327:113244. doi:10.1016/j.expneurol.2020.113244
Yan Z, Chu L, Jia X, Lin L, Cheng S. Myelin basic protein enhances axonal regeneration from neural progenitor cells. Cell Biosci. 2021;11:80. doi:10.1186/s13578-021-00584-7
Flaim KE, Copenhaver ME, Jefferson LS. Effects of diabetes on protein synthesis in fast- and slow-twitch rat skeletal muscle. Am J Physiol-Endocrinol Metab. 1980;239:E88-E95. doi:10.1152/ajpendo.1980.239.1.E88
Badu-Mensah A, Valinski P, Parsaud H, Hickman JJ, Guo X. Hyperglycemia negatively affects IPSC-derived myoblast proliferation and skeletal muscle regeneration and function. Cell. 2022;11:3674. doi:10.3390/cells11223674
Kurra S, Fink DA, Siris ES. Osteoporosis-associated fracture and diabetes. Endocrinol Metab Clin North Am. 2014;43:233-243. doi:10.1016/j.ecl.2013.09.004
Tuominen JT, Impivaara O, Puukka P, Rönnemaa T. Bone mineral density in patients with type 1 and type 2 diabetes. Diabetes Care. 1999;22:1196-1200. doi:10.2337/diacare.22.7.1196
Eller-Vainicher C, Cairoli E, Grassi G, et al. Pathophysiology and management of type 2 diabetes mellitus bone fragility. J Diabetes Res. 2020;2020:7608964. doi:10.1155/2020/7608964
Bird NC, Mabee PM. Developmental morphology of the axial skeleton of the zebrafish, Danio rerio (Ostariophysi: Cyprinidae). Dev Dyn. 2003;228:337-357. doi:10.1002/dvdy.10387
Menke AL, Spitsbergen JM, Wolterbeek APM, Woutersen RA. Normal anatomy and histology of the adult zebrafish. Toxicol Pathol. 2011;39:759-775. doi:10.1177/0192623311409597
Marques IJ, Lupi E, Mercader N. Model systems for regeneration: zebrafish. Development. 2019;146:dev167692. doi:10.1242/dev.167692
Jessen KR, Mirsky R. The success and failure of the Schwann cell response to nerve injury [online]. Front Cell Neurosci. 2019;13:33. doi:10.3389/fncel.2019.00033
Balakrishnan A, Belfiore L, Chu T-H, et al. Insights into the role and potential of Schwann cells for peripheral nerve repair from studies of development and injury. Front Mol Neurosci. 2021;13:608442. doi:10.3389/fnmol.2020.608442
Fu S, Gordon T. Contributing factors to poor functional recovery after delayed nerve repair: prolonged denervation. J Neurosci. 1995;15:3886-3895. doi:10.1523/JNEUROSCI.15-05-03886.1995
Kobayashi J, Mackinnon SE, Watanabe O, et al. The effect of duration of muscle denervation on functional recovery in the rat model. Muscle Nerve. 1997;20:858-866. doi:10.1002/(SICI)1097-4598(199707)20:7<858::AID-MUS10>3.0.CO;2-O
Tonelli F, Bek JW, Besio R, et al. Zebrafish: a resourceful vertebrate model to investigate skeletal disorders. Front Endocrinol (Lausanne). 2020;11:489. doi:10.3389/fendo.2020.00489
Sehring I, Mohammadi HF, Haffner-Luntzer M, Ignatius A, Huber-Lang M, Weidinger G. Zebrafish fin regeneration involves generic and regeneration-specific osteoblast injury responses. eLife. 2022;11:e77614. doi:10.7554/eLife.77614
Olsen AS, Sarras MP Jr, Intine RV. Limb regeneration is impaired in an adult zebrafish model of diabetes mellitus. Wound Repair Regen. 2010;18:532-542. doi:10.1111/j.1524-475X.2010.00613.x
Kindler JM, Kelly A, Khoury PR, Katz LEL, Urbina EM, Zemel BS. Bone mass and density in youth with type 2 diabetes, obesity, and healthy weight. Diabetes Care. 2020;43:2544-2552. doi:10.2337/dc19-2164
Fulzele K, DiGirolamo DJ, Liu Z, Xu J, Messina JL, Clemens TL. Disruption of the insulin-like growth factor type 1 receptor in osteoblasts enhances insulin signaling and action. J Biol Chem. 2007;282:25649-25658. doi:10.1074/jbc.M700651200
Yang J, Zhang X, Wang W, Liu J. Insulin stimulates osteoblast proliferation and differentiation through ERK and PI3K in MG-63 cells. Cell Biochem Funct. 2010;28:334-341. doi:10.1002/cbf.1668
Guo H, Wang C, Jiang B, et al. Association of insulin resistance and β-cell function with bone turnover biomarkers in Dysglycemia patients. Front Endocrinol (Lausanne). 2021;12:554604. doi:10.3389/fendo.2021.554604
Kennedy JM, Zochodne DW. The regenerative deficit of peripheral nerves in experimental diabetes: its extent, timing and possible mechanisms. Brain. 2000;123(Pt 10):2118-2129. doi:10.1093/brain/123.10.2118
Tantuwaya VS, Bailey SB, Schmidt RE, Villadiego A, Tong JX, Rich KM. Peripheral nerve regeneration through silicone chambers in streptozocin-induced diabetic rats. Brain Res. 1997;759:58-66. doi:10.1016/S0006-8993(97)00247-3
Terada M, Yasuda H, Kikkawa R. Delayed Wallerian degeneration and increased neurofilament phosphorylation in sciatic nerves of rats with streptozocin-induced diabetes. J Neurol Sci. 1998;155:23-30. doi:10.1016/s0022-510x(97)00269-4
Almeida RG, Czopka T, Ffrench-Constant C, Lyons DA. Individual axons regulate the myelinating potential of single oligodendrocytes in vivo. Development. 2011;138:4443-4450. doi:10.1242/dev.071001
Kirby BB, Takada N, Latimer AJ, et al. In vivo time-lapse imaging shows dynamic oligodendrocyte progenitor behavior during zebrafish development. Nat Neurosci. 2006;9:1506-1511. doi:10.1038/nn1803
Kucenas S, Takada N, Park H-C, Woodruff E, Broadie K, Appel B. CNS-derived glia ensheath peripheral nerves and mediate motor root development. Nat Neurosci. 2008;11:143-151. doi:10.1038/nn2025
Peri F, Nüsslein-Volhard C. Live imaging of neuronal degradation by microglia reveals a role for v0-ATPase a1 in phagosomal fusion In vivo. Cell. 2008;133:916-927. doi:10.1016/j.cell.2008.04.037
Doganli C, Bukata L, Lykke-Hartmann K. Whole-mount immunohistochemistry for anti-F59 in zebrafish embryos (1-5 days post fertilization (dpf)). Methods Mol Biol. 2016;1377:365-369. doi:10.1007/978-1-4939-3179-8_32
Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676-682. doi:10.1038/nmeth.2019
Burgess A, Vigneron S, Brioudes E, Labbé J-C, Lorca T, Castro A. Loss of human Greatwall results in G2 arrest and multiple mitotic defects due to deregulation of the cyclin B-Cdc2/PP2A balance. Proc Natl Acad Sci U S A. 2010;107:12564-12569. doi:10.1073/pnas.0914191107