Xenopus: An in vivo model for studying skin response to ultraviolet B irradiation.


Journal

Development, growth & differentiation
ISSN: 1440-169X
Titre abrégé: Dev Growth Differ
Pays: Japan
ID NLM: 0356504

Informations de publication

Date de publication:
May 2023
Historique:
revised: 25 02 2023
received: 28 05 2022
accepted: 27 02 2023
medline: 29 5 2023
pubmed: 8 3 2023
entrez: 7 3 2023
Statut: ppublish

Résumé

Ultraviolet B (UVB) in sunlight cause skin damage, ranging from wrinkles to photoaging and skin cancer. UVB can affect genomic DNA by creating cyclobutane pyrimidine dimers (CPDs) and pyrimidine-pyrimidine (6-4) photoproducts (6-4PPs). These lesions are mainly repaired by the nucleotide excision repair (NER) system and by photolyase enzymes that are activated by blue light. Our main goal was to validate the use of Xenopus laevis as an in vivo model system for investigating the impact of UVB on skin physiology. The mRNA expression levels of xpc and six other genes of the NER system and CPD/6-4PP photolyases were found at all stages of embryonic development and in all adult tissues tested. When examining Xenopus embryos at different time points after UVB irradiation, we observed a gradual decrease in CPD levels and an increased number of apoptotic cells, together with an epidermal thickening and an increased dendricity of melanocytes. We observed a quick removal of CPDs when embryos are exposed to blue light versus in the dark, confirming the efficient activation of photolyases. A decrease in the number of apoptotic cells and an accelerated return to normal proliferation rate was noted in blue light-exposed embryos compared with their control counterparts. Overall, a gradual decrease in CPD levels, detection of apoptotic cells, thickening of epidermis, and increased dendricity of melanocytes, emulate human skin responses to UVB and support Xenopus as an appropriate and alternative model for such studies.

Identifiants

pubmed: 36880984
doi: 10.1111/dgd.12848
doi:

Substances chimiques

Deoxyribodipyrimidine Photo-Lyase EC 4.1.99.3
Pyrimidine Dimers 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

194-202

Subventions

Organisme : Association Les enfants de la lune
Organisme : Fondation Maladies Rares

Informations de copyright

© 2023 The Authors. Development, Growth & Differentiation published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Developmental Biologists.

Références

Aoki, Y., Saint-Germain, N., Gyda, M., Magner-Fink, E., Lee, Y. H., Credidio, C., & Saint-Jeannet, J. P. (2003). Sox10 regulates the development of neural crest-derived melanocytes in Xenopus. Developmental Biology, 259, 19-33.
Banas, A. K., Zglobicki, P., Kowalska, E., Bazant, A., Dziga, D., & Strzalka, W. (2020). All you need is light. Photorepair of UV-induced pyrimidine dimers. Genes, 11, 1304.
Blaustein, A. R., & Belden, L. K. (2003). Amphibian defenses against ultraviolet-B radiation. Evolution & Development, 5, 89-97.
Blaustein, A. R., Hoffman, P. D., Hokit, D. G., Kiesecker, J. M., Walls, S. C., & Hays, J. B. (1994). UV repair and resistance to solar UV-B in amphibian eggs: A link to population declines? Proceedings of the National Academy of Sciences of the United States of America, 91, 1791-1795.
Blaustein, A. R., Kiesecker, J. M., Chivers, D. P., & Anthony, R. G. (1997). Ambient UV-B radiation causes deformities in amphibian embryos. Proceedings of the National Academy of Sciences of the United States of America, 94, 13735-13737.
Blum, M., & Ott, T. (2018). Xenopus: An undervalued model organism to study and model human genetic disease. Cells, Tissues, Organs, 205, 303-313.
Bonaventura, R., Zito, F., Russo, R., & Costa, C. (2021). A preliminary gene expression analysis on Paracentrotus lividus embryos exposed to UVB, cadmium and their combination. Aquatic Toxicology, 232, 105770.
Cadet, J., Grand, A., & Douki, T. (2015). Solar UV radiation-induced DNA Bipyrimidine photoproducts: Formation and mechanistic insights. Topics in Current Chemistry, 356, 249-275.
Cario-Andre, M., Briganti, S., Picardo, M., Nikaido, O., Gall, Y., Ginestar, J., & Taı¨eb, A. (2002). Epidermal reconstructs: A new tool to study topical and systemic photoprotective molecules. Journal of Photochemistry and Photobiology. B, 68, 79-87.
Cario-Andre, M., Pain, C., Gall, Y., Ginestar, J., Nikaido, O., & Taieb, A. (2000). Studies on epidermis reconstructed with and without melanocytes: Melanocytes prevent sunburn cell formation but not appearance of DNA damaged cells in fair-skinned caucasians. The Journal of Investigative Dermatology, 115, 193-199.
Chen, M., Liang, S., Shahid, A., Andresen, B. T., & Huang, Y. (2020). The beta-blocker carvedilol prevented ultraviolet-mediated damage of murine epidermal cells and 3D human reconstructed skin. International Journal of Molecular Sciences, 21, 798-812.
Cleaver, J. E. (2005). Cancer in xeroderma pigmentosum and related disorders of DNA repair. Nature Reviews. Cancer, 5, 564-573.
De Quadros, T., Schramm, H., Zeni, E. C., Simioni, C., Allodi, S., Müller, Y. M., Ammar, D., & Nazari, E. M. (2016). Developmental effects of exposure to ultraviolet B radiation on the freshwater prawn Macrobrachium olfersi: Mitochondria as a target of environmental UVB radiation. Ecotoxicology and Environmental Safety, 132, 279-287.
Dong, Q., Svoboda, K., Tiersch, T. R., & Monroe, W. T. (2007). Photobiological effects of UVA and UVB light in zebrafish embryos: Evidence for a competent photorepair system. Journal of Photochemistry and Photobiology. B, 88, 137-146.
Dubaissi, E., & Papalopulu, N. (2011). Embryonic frog epidermis: A model for the study of cell-cell interactions in the development of mucociliary disease. Disease Models & Mechanisms, 4, 179-192.
Duval, C., Regnier, M., & Schmidt, R. (2001). Distinct melanogenic response of human melanocytes in mono-culture, in co-culture with keratinocytes and in reconstructed epidermis, to UV exposure. Pigment Cell Research, 14, 348-355.
Elmaci, I., Altinoz, M. A., Sari, R., & Bolukbasi, F. H. (2018). Phosphorylated histone H3 (PHH3) as a novel cell proliferation marker and prognosticator for meningeal tumors: A short review. Applied Immunohistochemistry & Molecular Morphology, 26, 627-631.
Essen, L. O., & Klar, T. (2006). Light-driven DNA repair by photolyases. Cellular and Molecular Life Sciences, 63, 1266-1277.
Fairbank, P. D., Lee, C., Ellis, A., Hildebrand, J. D., Gross, J. M., & Wallingford, J. B. (2006). Shroom2 (APXL) regulates melanosome biogenesis and localization in the retinal pigment epithelium. Development, 133, 4109-4118.
Friedmann, P. S., & Gilchrest, B. A. (1987). Ultraviolet radiation directly induces pigment production by cultured human melanocytes. Journal of Cellular Physiology, 133, 88-94.
Hachiya, A., Sriwiriyanont, P., Kaiho, E., Kitahara, T., Takema, Y., & Tsuboi, R. (2005). An in vivo mouse model of human skin substitute containing spontaneously sorted melanocytes demonstrates physiological changes after UVB irradiation. The Journal of Investigative Dermatology, 125, 364-372.
Hader, D. P., & Sinha, R. P. (2005). Solar ultraviolet radiation-induced DNA damage in aquatic organisms: Potential environmental impact. Mutation Research, 571, 221-233.
Harland, R. M., & Grainger, R. M. (2011). Xenopus research: Metamorphosed by genetics and genomics. Trends in Genetics, 27, 507-515.
Hosseini, M., Dousset, L., Mahfouf, W., Serrano-Sanchez, M., Redonnet-Vernhet, I., Mesli, S., Kasraian, Z., Obre, E., Bonneu, M., Claverol, S., Vlaski, M., Ivanovic, Z., Rachidi, W., Douki, T., Taieb, A., Bouzier-Sore, A. K., Rossignol, R., & Rezvani, H. R. (2018). Energy metabolism rewiring precedes UVB-induced primary skin tumor formation. Cell Reports, 23, 3621-3634.
Hosseini, M., Ezzedine, K., Taieb, A., & Rezvani, H. R. (2015). Oxidative and energy metabolism as potential clues for clinical heterogeneity in nucleotide excision repair disorders. The Journal of Investigative Dermatology, 135, 341-351.
Hurem, S., Fraser, T. W. K., Gomes, T., Mayer, I., & Christensen, T. (2018). Sub-lethal UV radiation during early life stages alters the behaviour, heart rate and oxidative stress parameters in zebrafish (Danio rerio). Ecotoxicology and Environmental Safety, 166, 359-365.
Jian, Q., An, Q., Zhu, D., Hui, K., Liu, Y., Chi, S., & Li, C. (2014). MicroRNA 340 is involved in UVB-induced dendrite formation through the regulation of RhoA expression in melanocytes. Molecular and Cellular Biology, 34, 3407-3420.
Kim, S. T., Heelis, P. F., & Sancar, A. (1992). Energy transfer (deazaflavin-->FADH2) and electron transfer (FADH2-->T <> T) kinetics in Anacystis nidulans photolyase. Biochemistry, 31, 11244-11248.
Kligman, L. H. (1986). Photoaging. Manifestations, prevention, and treatment. Dermatologic Clinics, 4, 517-528.
Latonen, L., & Laiho, M. (2005). Cellular UV damage responses--functions of tumor suppressor p53. Biochimica et Biophysica Acta, 1755, 71-89.
Liu, S., Zhang, H., & Duan, E. (2013). Epidermal development in mammals: Key regulators, signals from beneath, and stem cells. International Journal of Molecular Sciences, 14, 10869-10895.
Livneh, Z., Cohen-Fix, O., Skaliter, R., & Elizur, T. (1993). Replication of damaged DNA and the molecular mechanism of ultraviolet light mutagenesis. Critical Reviews in Biochemistry and Molecular Biology, 28, 465-513.
Mahfouf, W., Hosseini, M., Muzotte, E., Serrano-Sanchez, M., Dousset, L., Moisan, F., Rachidi, W., Taieb, A., Rudolf, J., & Rezvani, H. R. (2019). Loss of epidermal HIF-1alpha blocks UVB-induced tumorigenesis by affecting DNA repair capacity and oxidative stress. The Journal of Investigative Dermatology, 139(2016-2028), e2017.
Mahmoud, U. M., Mekkawy, I. A., & Sayed Ael, D. (2009). Ultraviolet radiation-a (366 nm) induced morphological and histological malformations during embryogenesis of Clarias gariepinus (Burchell, 1822). Journal of Photochemistry and Photobiology. B, 95, 117-128.
Matsumura, Y., & Ananthaswamy, H. N. (2002). Short-term and long-term cellular and molecular events following UV irradiation of skin: Implications for molecular medicine. Expert Reviews in Molecular Medicine, 4, 1-22.
Medina-Cuadra, L., & Monsoro-Burq, A. H. (2021). Xenopus, an emerging model for studying pathologies of the neural crest. Current Topics in Developmental Biology, 145, 313-348.
Mullenders, L. H. F. (2018). Solar UV damage to cellular DNA: From mechanisms to biological effects. Photochemical & Photobiological Sciences, 17, 1842-1852.
Nahon, S., Castro Porras, V. A., Pruski, A. M., & Charles, F. (2009). Sensitivity to UV radiation in early life stages of the Mediterranean Sea urchin Sphaerechinus granularis (Lamarck). Science of the total environment, 407, 1892-1900.
Nieuwkoop, P. D., & Faber, J. (1994). Normal table of Xenopus Laevis (Daudin): A systematical and chronological survey of the development from the fertilized egg till the end of metamorphosis. Garland Pub.
Raad, H., Serrano-Sanchez, M., Harfouche, G., Mahfouf, W., Bortolotto, D., Bergeron, V., Kasraian, Z., Dousset, L., Hosseini, M., Taieb, A., & Rezvani, H. R. (2017). NADPH Oxidase-1 plays a key role in keratinocyte responses to UV radiation and UVB-induced skin carcinogenesis. The Journal of Investigative Dermatology, 137, 1311-1321.
Rastogi, R. P., Kumar, A., Tyagi, M. B., & Sinha, R. P. (2010). Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. Journal of Nucleic Acids, 2010, 592980.
Rezvani, H. R., Cario-Andre, M., Pain, C., Ged, C., Deverneuil, H., & Taieb, A. (2007). Protection of normal human reconstructed epidermis from UV by catalase overexpression. Cancer Gene Therapy, 14, 174-186.
Rezvani, H. R., Mazurier, F., Cario-Andre, M., Pain, C., Ged, C., Taïeb, A., & de Verneuil, H. (2006). Protective effects of catalase overexpression on UVB-induced apoptosis in normal human keratinocytes. The Journal of Biological Chemistry, 281, 17999-18007.
Rudolf, J., Raad, H., Taieb, A., & Rezvani, H. R. (2018). NADPH oxidases and their roles in skin homeostasis and carcinogenesis. Antioxidants & Redox Signaling, 28, 1238-1261.
Saka, Y., & Smith, J. C. (2001). Spatial and temporal patterns of cell division during early Xenopus embryogenesis. Developmental Biology, 229, 307-318.
Sander, C. S., Chang, H., Hamm, F., Elsner, P., & Thiele, J. J. (2004). Role of oxidative stress and the antioxidant network in cutaneous carcinogenesis. International Journal of Dermatology, 43, 326-335.
Sayed, A. E.-D. H., Wassif, E. T., & Elballouz, A. I. (2016). Retina damage after exposure to UVA radiation on the early developmental stages of the Egyptian toad Bufo regularis Reuss. Journal of Radiation Research and Applied Sciences, 9, 409-423.
Sayed, A. H., Abdel-Tawab, H. S., Abdel Hakeem, S. S., & Mekkawy, I. A. (2013). The protective role of quince leaf extract against the adverse impacts of ultraviolet--a radiation on some tissues of Clarias gariepinus (Burchell, 1822). Journal of Photochemistry and Photobiology. B, 119, 9-14.
Scott, G. (2002). Rac and rho: The story behind melanocyte dendrite formation. Pigment Cell Research, 15, 322-330.
Seiberg, M. (2001). Keratinocyte-melanocyte interactions during melanosome transfer. Pigment Cell Research, 14, 236-242.
Shaidani, N. I., Mcnamara, S., Wlizla, M., & Horb, M. E. (2021). Obtaining Xenopus laevis Eggs. Cold Spring Harbor Protocols, 2021, 1-6.
Sible, J. C., Anderson, J. A., Lewellyn, A. L., & Maller, J. L. (1997). Zygotic transcription is required to block a maternal program of apoptosis in Xenopus embryos. Developmental Biology, 189, 335-346.
Simon, E., Thézé, N., Fedou, S., Thiébaud, P., & Faucheux, C. (2017). Vestigial-like 3 is a novel Ets1 interacting partner and regulates trigeminal nerve formation and cranial neural crest migration. Biology open, 6, 1528-1540.
Skobowiat, C., Brozyna, A. A., Janjetovic, Z., Jeayeng, S., Oak, A. S., Kim, T. K., Panich, U., Reiter, R. J., & Slominski, A. T. (2018). Melatonin and its derivatives counteract the ultraviolet B radiation-induced damage in human and porcine skin ex vivo. Journal of Pineal Research, 65, e12501.
Smith, G. R., Waters, M. A., & Rettig, J. E. (2000). Consequences of embryonic UV-B exposure for embryos and tadpoles of the plains leopard frog. Conservation Biology, 14, 1903-1907.
Sulaimon, S. S., & Kitchell, B. E. (2003). The biology of melanocytes. Veterinary Dermatology, 14, 57-65.
Surova, O., & Zhivotovsky, B. (2013). Various modes of cell death induced by DNA damage. Oncogene, 32, 3789-3797.
Tanida, H., Tahara, E., Mochizuki, M., Yamane, Y., & Ryoji, M. (2005). Purification, cDNA cloning, and expression profiles of the cyclobutane pyrimidine dimer photolyase of Xenopus laevis. The FEBS Journal, 272, 6098-6108.
Todo, T., Kim, S. T., Hitomi, K., Otoshi, E., Inui, T., Morioka, H., Kobayashi, H., Ohtsuka, E., Toh, H., & Ikenaga, M. (1997). Flavin adenine dinucleotide as a chromophore of the Xenopus (6-4) photolyase. Nucleic Acids Research, 25, 764-768.
Tomlinson, M. L., Rejzek, M., Fidock, M., Field, R. A., & Wheeler, G. N. (2009). Chemical genomics identifies compounds affecting Xenopus laevis pigment cell development. Molecular BioSystems, 5, 376-384.
Tréguer, K., Faucheux, C., Veschambre, P., Fedou, S., Thézé, N., & Thiébaud, P. (2013). Comparative functional analysis of ZFP36 genes during Xenopus development. PLoS ONE, 8, e54550.
Yamaguchi, Y., Brenner, M., & Hearing, V. J. (2007). The regulation of skin pigmentation. The Journal of Biological Chemistry, 282, 27557-27561.
Yamaguchi, Y., Takahashi, K., Zmudzka, B. Z., Kornhauser, A., Miller, S. A., Tadokoro, T., Berens, W., Beer, J. Z., Hearing, V. J., Yamaguchi, Y., Takahashi, K., Zmudzka, B. Z., Kornhauser, A., Miller, S. A., Tadokoro, T., Berens, W., Beer, J. Z., & Hearing, V. J. (2006). Human skin responses to UV radiation: Pigment in the upper epidermis protects against DNA damage in the lower epidermis and facilitates apoptosis. The FASEB Journal, 20, 1486-1488.
Zhang, M., Wang, L., & Zhong, D. (2017). Photolyase: Dynamics and electron-transfer mechanisms of DNA repair. Archives of Biochemistry and Biophysics, 632, 158-174.

Auteurs

Joudi El Mir (J)

University Bordeaux, Inserm, BRIC, Bordeaux, France.

Sandrine Fedou (S)

University Bordeaux, Inserm, BRIC, Bordeaux, France.

Nadine Thézé (N)

University Bordeaux, Inserm, BRIC, Bordeaux, France.

Fanny Morice-Picard (F)

University Bordeaux, Inserm, BRIC, Bordeaux, France.
Department of Dermatology and Pediatric Dermatology, National Reference Centre for Rare Disorders, Hôpital des Enfants Pellegrin, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France.

Muriel Cario (M)

University Bordeaux, Inserm, BRIC, Bordeaux, France.
Aquiderm, University of Bordeaux, Bordeaux, France.

Hussein Fayyad-Kazan (H)

Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon.

Pierre Thiébaud (P)

University Bordeaux, Inserm, BRIC, Bordeaux, France.

Hamid-Reza Rezvani (HR)

University Bordeaux, Inserm, BRIC, Bordeaux, France.
Aquiderm, University of Bordeaux, Bordeaux, France.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH