Tungsten Oxide Mediated Quasi-van der Waals Epitaxy of WS
interface
metal organic chemical vapor deposition
quasi-van der Waals epitaxy
surface modification
transition metal dichalcogenides
tungsten trioxide
Journal
ACS nano
ISSN: 1936-086X
Titre abrégé: ACS Nano
Pays: United States
ID NLM: 101313589
Informations de publication
Date de publication:
28 Mar 2023
28 Mar 2023
Historique:
medline:
9
3
2023
pubmed:
9
3
2023
entrez:
8
3
2023
Statut:
ppublish
Résumé
Conventional epitaxy plays a crucial role in current state-of-the art semiconductor technology, as it provides a path for accurate control at the atomic scale of thin films and nanostructures, to be used as the building blocks in nanoelectronics, optoelectronics, sensors, etc. Four decades ago, the terms "van der Waals" (vdW) and "quasi-vdW (Q-vdW) epitaxy" were coined to explain the oriented growth of vdW layers on 2D and 3D substrates, respectively. The major difference with conventional epitaxy is the weaker interaction between the epi-layer and the epi-substrates. Indeed, research on Q-vdW epitaxial growth of transition metal dichalcogenides (TMDCs) has been intense, with oriented growth of atomically thin semiconductors on sapphire being one of the most studied systems. Nonetheless, there are some striking and not yet understood differences in the literature regarding the orientation registry between the epi-layers and epi-substrate and the interface chemistry. Here we study the growth of WS
Identifiants
pubmed: 36883970
doi: 10.1021/acsnano.2c09754
pmc: PMC10062024
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
5399-5411Références
ACS Nano. 2021 Feb 23;15(2):2532-2541
pubmed: 33450158
ACS Nano. 2016 Mar 22;10(3):3580-8
pubmed: 26866442
ACS Nano. 2013 Apr 23;7(4):2898-926
pubmed: 23464873
Adv Mater. 2020 Oct;32(42):e2003542
pubmed: 32935911
Small. 2020 Apr;16(16):e2000596
pubmed: 32162833
ACS Nano. 2015 Apr 28;9(4):4611-20
pubmed: 25843548
Nanoscale. 2019 Apr 23;11(16):7701-7709
pubmed: 30946393
ACS Nano. 2021 Jan 26;15(1):526-538
pubmed: 33356120
Adv Mater. 2012 May 2;24(17):2320-5
pubmed: 22467187
ACS Nano. 2018 Oct 23;12(10):10032-10044
pubmed: 30232883
ACS Nano. 2014 Nov 25;8(11):11522-8
pubmed: 25347296
Chem Rev. 2018 Jul 11;118(13):6091-6133
pubmed: 29384374
ACS Nano. 2017 Sep 26;11(9):9215-9222
pubmed: 28783311
Nat Nanotechnol. 2022 Jan;17(1):33-38
pubmed: 34782776
ACS Nano. 2018 Feb 27;12(2):965-975
pubmed: 29360349
ACS Nano. 2015 Aug 25;9(8):8368-75
pubmed: 26221865
Nano Lett. 2018 Feb 14;18(2):1049-1056
pubmed: 29342357
Nat Commun. 2015 Jun 23;6:7482
pubmed: 26099196
ACS Nano. 2019 Mar 26;13(3):3341-3352
pubmed: 30758945
Chem Rev. 2018 Jul 11;118(13):6134-6150
pubmed: 28682055
Nat Nanotechnol. 2021 Nov;16(11):1201-1207
pubmed: 34475559
ACS Nano. 2020 Apr 28;14(4):5036-5045
pubmed: 32267670
Nat Commun. 2020 Nov 5;11(1):5607
pubmed: 33154376
Phys Rev B Condens Matter. 1996 Oct 15;54(16):11169-11186
pubmed: 9984901
Small. 2017 Feb;13(7):
pubmed: 27925390
ACS Appl Mater Interfaces. 2020 Sep 30;12(39):44335-44344
pubmed: 32877158
Nature. 2015 Apr 30;520(7549):656-60
pubmed: 25925478
Phys Rev Lett. 1996 Oct 28;77(18):3865-3868
pubmed: 10062328
Nanoscale. 2019 Nov 28;11(46):22493-22503
pubmed: 31746901
Adv Mater. 2018 Oct;30(41):e1706581
pubmed: 29770507