Tides regulate the flow and density of Antarctic Bottom Water from the western Ross Sea.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
08 Mar 2023
Historique:
received: 13 11 2022
accepted: 06 03 2023
entrez: 8 3 2023
pubmed: 9 3 2023
medline: 9 3 2023
Statut: epublish

Résumé

Antarctic Bottom Water (AABW) stores heat and gases over decades to centuries after contact with the atmosphere during formation on the Antarctic shelf and subsequent flow into the global deep ocean. Dense water from the western Ross Sea, a primary source of AABW, shows changes in water properties and volume over the last few decades. Here we show, using multiple years of moored observations, that the density and speed of the outflow are consistent with a release from the Drygalski Trough controlled by the density in Terra Nova Bay (the "accelerator") and the tidal mixing (the "brake"). We suggest tides create two peaks in density and flow each year at the equinoxes and could cause changes of ~ 30% in the flow and density over the 18.6-year lunar nodal tide. Based on our dynamic model, we find tides can explain much of the decadal variability in the outflow with longer-term changes likely driven by the density in Terra Nova Bay.

Identifiants

pubmed: 36890202
doi: 10.1038/s41598-023-31008-w
pii: 10.1038/s41598-023-31008-w
pmc: PMC9995308
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

3873

Subventions

Organisme : New Zealand Strategic Investment Fund: Antarctic Science Platform
ID : Contract ANTA1801
Organisme : New Zealand Strategic Investment Fund: Antarctic Science Platform
ID : Contract ANTA1801
Organisme : Italian National Program for Antarctic Research
ID : MORSea project
Organisme : Italian National Program for Antarctic Research
ID : MORSea project
Organisme : Italian National Program for Antarctic Research
ID : MORSea project

Commentaires et corrections

Type : ErratumIn

Informations de copyright

© 2023. The Author(s).

Références

Johnson, G. C. Quantifying Antarctic Bottom Water and North Atlantic Deep Water volumes. J. Geophys. Res. 113, 97. https://doi.org/10.1029/2007JC004477 (2008).
doi: 10.1029/2007JC004477
Heuzé, C., Heywood, K. J., Stevens, D. P. & Ridley, J. K. Southern ocean bottom water characteristics in CMIP5 models. Geophys. Res. Lett. 40, 1409–1414 (2013).
doi: 10.1002/grl.50287
Schmidtko, S., Stramma, L. & Visbeck, M. Decline in global oceanic oxygen content during the past five decades. Nature 542, 335–339 (2017).
doi: 10.1038/nature21399 pubmed: 28202958
Mahieu, L., Lo Monaco, C., Metzl, N., Fin, J. & Mignon, C. Variability and stability of anthropogenic CO
doi: 10.5194/os-16-1559-2020
Gordon, A. L., Huber, B. A. & Busecke, J. Bottom water export from the western Ross Sea, 2007 through 2010. Geophys. Res. Lett. 42, 5387–5394. https://doi.org/10.1002/2015GL064457 (2015).
doi: 10.1002/2015GL064457
Orsi, A. H. On the total input of Antarctic waters to the deep ocean: A preliminary estimate from chlorofluorocarbon measurements. J. Geophys. Res. https://doi.org/10.1029/2001JC000976 (2002).
doi: 10.1029/2001JC000976
Purkey, S. G. & Johnson, G. C. Antarctic bottom water warming and freshening: Contributions to sea level rise, ocean freshwater budgets, and global heat gain*. J. Clim. 26, 6105–6122. https://doi.org/10.1175/JCLI-D-12-00834.1 (2013).
doi: 10.1175/JCLI-D-12-00834.1
van Wijk, E. M. & Rintoul, S. R. Freshening drives contraction of Antarctic Bottom Water in the Australian Antarctic Basin. Geophys. Res. Lett. 41, 1657–1664. https://doi.org/10.1002/2013GL058921 (2014).
doi: 10.1002/2013GL058921
Castagno, P. et al. Rebound of shelf water salinity in the Ross Sea. Nat. Commun. https://doi.org/10.1038/s41467-019-13083-8 (2019).
doi: 10.1038/s41467-019-13083-8 pubmed: 31784513 pmcid: 6884573
Bowen, M. M. et al. The role of tides in bottom water export from the western Ross Sea. Sci. Rep. 11, 2246. https://doi.org/10.1038/s41598-021-81793-5 (2021).
doi: 10.1038/s41598-021-81793-5 pubmed: 33500521 pmcid: 7838284
Jacobs, S. S., Giulivi, C. F. & Dutrieux, P. Persistent Ross Sea freshening from imbalance West Antarctic Ice shelf melting. J. Geophys. Res. Oceans https://doi.org/10.1029/2021JC017808 (2022).
doi: 10.1029/2021JC017808
Silvano, A. et al. Recent recovery of Antarctic Bottom Water formation in the Ross Sea driven by climate anomalies. Nat. Geosci. https://doi.org/10.1038/s41561-020-00655-3 (2020).
doi: 10.1038/s41561-020-00655-3
Gordon, A. L., Huber, B., McKee, D. & Visbeck, M. A seasonal cycle in the export of bottom water from the Weddell Sea. Nat. Geosci. 3, 551–556. https://doi.org/10.1038/ngeo916 (2010).
doi: 10.1038/ngeo916
Padman, L., Howard, S. L., Orsi, A. H. & Muench, R. D. Tides of the northwestern Ross Sea and their impact on dense outflows of Antarctic Bottom Water. Deep Sea Res. Part II Top. Stud. Oceanogr. 56, 818–834. https://doi.org/10.1016/j.dsr2.2008.10.026 (2009).
doi: 10.1016/j.dsr2.2008.10.026
Budillon, G., Castagno, P., Aliani, S., Spezie, G. & Padman, L. Thermohaline variability and Antarctic bottom water formation at the Ross Sea shelf break. Deep Sea Res. Part I Oceanogr. Res. Pap. 58, 1002–1018 (2011).
doi: 10.1016/j.dsr.2011.07.002
Castagno, P., Falco, P., Dinniman, M. S., Spezie, G. & Budillon, G. Temporal variability of the Circumpolar Deep Water inflow onto the Ross Sea continental shelf. J. Mar. Syst. 166, 37–49. https://doi.org/10.1016/j.jmarsys.2016.05.006 (2017).
doi: 10.1016/j.jmarsys.2016.05.006
Ou, H.-W., Guan, X. & Chen, D. Tidal effect on the dense water discharge, Part 1: Analytical model. Deep Sea Res. Part II Top. Stud. Oceanogr. 56, 874–883. https://doi.org/10.1016/j.dsr2.2008.10.031 (2009).
doi: 10.1016/j.dsr2.2008.10.031
Guan, X., Ou, H.-W. & Chen, D. Tidal effect on the dense water discharge, Part 2: A numerical study. Deep Sea Res. Part II Top. Stud. Oceanograph. 56, 884–894. https://doi.org/10.1016/j.dsr2.2008.10.028 (2009).
doi: 10.1016/j.dsr2.2008.10.028
Wang, Q. et al. Enhanced cross-shelf exchange by tides in the western Ross Sea. Geophys. Res. Lett. 40, 5735–5739. https://doi.org/10.1002/2013GL058207 (2013).
doi: 10.1002/2013GL058207
Fusco, G., Budillon, G. & Spezie, G. Surface heat fluxes and thermohaline variability in the Ross Sea and in Terra Nova Bay polynya. Cont. Shelf Res. 29, 1887–1895. https://doi.org/10.1016/j.csr.2009.07.006 (2009).
doi: 10.1016/j.csr.2009.07.006
Rusciano, E., Budillon, G., Fusco, G. & Spezie, G. Evidence of atmosphere–sea ice–ocean coupling in the Terra Nova Bay polynya (Ross Sea—Antarctica). Cont. Shelf Res. 61–62, 112–124. https://doi.org/10.1016/j.csr.2013.04.002 (2013).
doi: 10.1016/j.csr.2013.04.002
Bergamasco, A., Defendi, V., Zambianchi, E. & Spezie, G. Evidence of dense water overflow on the Ross Sea shelf-break. Antarct. Sci. 14, 271–277. https://doi.org/10.1017/S0954102002000068 (2002).
doi: 10.1017/S0954102002000068
Loder, J. W. & Garrett, C. The 18.6-year cycle of sea surface temperature in shallow seas due to variations in tidal mixing. J. Geophys. Res. Oceans 83, 1967–1970. https://doi.org/10.1029/JC083iC04p01967 (1978).
doi: 10.1029/JC083iC04p01967
Denny, M. W. & Paine, R. T. Celestial mechanics, sea-level changes, and intertidal ecology. Biol. Bull. 194, 108–115. https://doi.org/10.2307/1543040 (1998).
doi: 10.2307/1543040 pubmed: 28570845
Royer, T. C. High-latitude oceanic variability associated with the 18.6-year nodal tide. J. Geophys. Res. Oceans 98, 4639–4644. https://doi.org/10.1029/92JC02750 (1993).
doi: 10.1029/92JC02750
Daae, K., Fer, I. & Darelius, E. Variability and mixing of the filchner overflow plume on the continental slope, Weddell Sea. J. Phys. Oceanogr. 49, 3–20. https://doi.org/10.1175/jpo-d-18-0093.1 (2019).
doi: 10.1175/jpo-d-18-0093.1
Begeman, C. B. et al. Tidal pressurization of the Ocean Cavity Near an Antarctic Ice shelf grounding line. J. Geophys. Res. Oceans 125, e2019JC015562. https://doi.org/10.1029/2019JC015562 (2020).
doi: 10.1029/2019JC015562
Stevens, C. et al. Ocean mixing and heat transport processes observed under the Ross Ice Shelf control its basal melting. Proc. Natl. Acad. Sci. 117, 16799–16804. https://doi.org/10.1073/pnas.1910760117 (2020).
doi: 10.1073/pnas.1910760117 pubmed: 32601211 pmcid: 7382223
Geyer, W. R. & MacCready, P. The Estuarine circulation. Annu. Rev. Fluid Mech. 46, 175–197. https://doi.org/10.1146/annurev-fluid-010313-141302 (2014).
doi: 10.1146/annurev-fluid-010313-141302
JPL. HORIZONS Web-Interface on-line solar system data and ephemeris computation service (2020).

Auteurs

Melissa M Bowen (MM)

School of Environment, University of Auckland, Auckland, New Zealand. m.bowen@auckland.ac.nz.

Denise Fernandez (D)

NIWA, Wellington, New Zealand.

Arnold L Gordon (AL)

Lamont-Doherty Earth Observatory, Columbia University, New York, USA.

Bruce Huber (B)

Lamont-Doherty Earth Observatory, Columbia University, New York, USA.

Pasquale Castagno (P)

University of Messina, Messina, Italy.

Pierpaolo Falco (P)

Università Politecnica Delle Marche, Ancona, Italy.

Giorgio Budillon (G)

University Parthenope, Naples, Italy.

Kathryn L Gunn (KL)

CSIRO Oceans and Atmosphere, Hobart, TAS, Australia.

Aitana Forcen-Vazquez (A)

LifeWatchERIC, Seville, Spain.

Classifications MeSH