SViMULATE: a computer program facilitating interactive, multi-mode simulation of analytical ultracentrifugation data.
Analytical ultracentrifugation
Computer simulations
Proteins
Sedimentation velocity
Viral vectors
Journal
European biophysics journal : EBJ
ISSN: 1432-1017
Titre abrégé: Eur Biophys J
Pays: Germany
ID NLM: 8409413
Informations de publication
Date de publication:
Jul 2023
Jul 2023
Historique:
received:
27
10
2022
accepted:
18
02
2023
revised:
04
02
2023
medline:
23
8
2023
pubmed:
9
3
2023
entrez:
8
3
2023
Statut:
ppublish
Résumé
The ability to simulate sedimentation velocity (SV) analytical ultracentrifugation (AUC) experiments has proved to be a valuable tool for research planning, hypothesis testing, and pedagogy. Several options for SV data simulation exist, but they often lack interactivity and require up-front calculations on the part of the user. This work introduces SViMULATE, a program designed to make AUC experimental simulation quick, straightforward, and interactive. SViMULATE takes user-provided parameters and outputs simulated AUC data in a format suitable for subsequent analyses, if desired. The user is not burdened by the necessity to calculate hydrodynamic parameters for simulated macromolecules, as the program can compute these properties on the fly. It also frees the user of decisions regarding simulation stop time. SViMULATE features a graphical view of the species that are under simulation, and there is no limit on their number. Additionally, the program emulates data from different experimental modalities and data-acquisition systems, including the realistic simulation of noise for the absorbance optical system. The executable is available for immediate download.
Identifiants
pubmed: 36890221
doi: 10.1007/s00249-023-01637-0
pii: 10.1007/s00249-023-01637-0
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
293-302Informations de copyright
© 2023. European Biophysical Societies' Association.
Références
Beazley DM (1996) Using SWIG to control, prototype, and debug C programs with Python. https://www.legacy.python.org/workshops/1996-06/papers/ . Accessed 6 Feb 2023
Behlke J, Ristau O (2002) A new approximate whole boundary solution of the Lamm differential equation for the analysis of sedimentation velocity experiments. Biophys Chem 95:59–68
doi: 10.1016/S0301-4622(01)00248-4
pubmed: 11880173
Brautigam CA, Deka RK, Liu WZ, Norgard MV (2018) Crystal structures of MglB-2 (TP0684), a topologically variant D-glucose-binding protein from Treponema pallidum, reveal a ligand-induced conformational change. Protein Sci 27:880–885
doi: 10.1002/pro.3373
pubmed: 29318719
pmcid: 5866939
Brautigam CA, Tso S-C, Deka RK et al (2020) Using modern approaches to sedimentation velocity to detect conformational changes in proteins. Eur Biophys J 49:729–743
doi: 10.1007/s00249-020-01453-w
pubmed: 32761255
pmcid: 7704540
Brown PH, Schuck P (2008) A new adaptive grid-size algorithm for the simulation of sedimentation velocity profiles in analytical ultracentrifugation. Comput Phys Commun 178:105–120
doi: 10.1016/j.cpc.2007.08.012
pubmed: 18196178
pmcid: 2267755
Burnham B, Nass S, Kong E et al (2015) Analytical ultracentrifugation as an approach to characterize recombinant adeno-associated viral vectors. Hum Gene Ther Methods 26:228–242
doi: 10.1089/hgtb.2015.048
pubmed: 26414997
Cao W, Demeler B (2008) Modeling analytical ultracentrifugation experiments with an adaptive space-time finite element solution for multicomponent reacting systems. Biophys J 95:54–65
doi: 10.1529/biophysj.107.123950
pubmed: 18390609
pmcid: 2426643
Claverie J-M, Dreux H, Cohen R (1975) Sedimentation of generalized systems of interacting particles. I. Solution of systems of complete Lamm equations. Biopolymers 14:1685–1700
doi: 10.1002/bip.1975.360140811
pubmed: 1156660
Cox DJ, Dale RS (1981) Simulation of transport experiments for interacting systems. In: Frieden C, Nichol LW (eds) Protein-protein interactions. John Wiley & Sons, New York, pp 173–211
Crank J, Nicolson P (1947) A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Math Proc Cambridge Philos Soc 43:50–67
doi: 10.1017/S0305004100023197
Dam J, Velikovsky CA, Mariuzza RA et al (2005) Sedimentation velocity analysis of heterogeneous protein-protein interactions: Lamm equation modeling and sedimentation coefficient distributions c(s). Biophys J 89:619–634
doi: 10.1529/biophysj.105.059568
pubmed: 15863475
pmcid: 1366561
Fleming PJ, Fleming KG (2018) HullRad: Fast calculations of folded and disordered protein and nucleic acid hydrodynamic properties. Biophys J 114:856–869
doi: 10.1016/j.bpj.2018.01.002
pubmed: 29490246
pmcid: 5984988
Harris CR, Millman KJ, van der Walt SJ et al (2020) Array programming with NumPy. Nature 585:357–362
doi: 10.1038/s41586-020-2649-2
pubmed: 32939066
pmcid: 7759461
Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng 9:90–95
doi: 10.1109/MCSE.2007.55
Kar SR, Kingsbury JS, Lewis MS et al (2000) Analysis of transport experiments using pseudo-absorbance data. Anal Biochem 285:135–142
doi: 10.1006/abio.2000.4748
pubmed: 10998273
Kirschner MW, Schachman HK (1971a) Conformational changes in proteins as measured by difference sedimentation studies. II. Effect of stereospecific ligands on the catalytic subunit of aspartate transcarbamylase. Biochemistry 10:1919–1926
doi: 10.1021/bi00786a028
pubmed: 5563768
Kirschner MW, Schachman HK (1971b) Conformational changes in proteins as measured by difference sedimentation studies. I. A technique for measuring small changes in sedimentation coefficient. Biochemistry 10:1900–1919
doi: 10.1021/bi00786a027
pubmed: 5563767
Lamm O (1929) Die differentialgleichung der ultrazentrifugierung. Ark För Mat Astron Och Fys 21B:1–4
Ma J, Zhao H, Schuck P (2015) A histogram approach to the quality of fit in sedimentation velocity analyses. Anal Biochem 483:1–3
doi: 10.1016/j.ab.2015.04.029
pubmed: 25959995
pmcid: 4461538
Maruno T, Usami K, Ishii K et al (2021) Comprehensive size distribution and composition analysis of adeno-associated virus vector by multiwavelength sedimentation velocity analytical ultracentrifugation. J Pharm Sci 110:3375–3384. https://doi.org/10.1016/j.xphs.2021.06.031
doi: 10.1016/j.xphs.2021.06.031
pubmed: 34186069
Nass SA, Mattingly MA, Woodcock DA et al (2018) Universal method for the purification of recombinant AAV vectors of differing serotypes. Mol Ther Methods Clin Dev 9:33–46
doi: 10.1016/j.omtm.2017.12.004
pubmed: 29349097
Philo JS (1996) An improved function for fitting sedimentation velocity data for low- molecular-weight solutes. Biophys J 72:435–444
doi: 10.1016/S0006-3495(97)78684-3
Schuck P (1998) Sedimentation analysis of noninteracting and self-associating solutes using numerical solutions to the Lamm equation. Biophys J 75:1503–1512
doi: 10.1016/S0006-3495(98)74069-X
pubmed: 9726952
pmcid: 1299825
Schuck P (2016) Sedimentation velocity analytical ultracentrifugation: discrete species and size-distributions of macromolecules and particles. CRC Press, Boca Raton
doi: 10.1201/9781315367231
Schuck P, Demeler B (1999) Direct sedimentation analysis of interference optical data in analytical ultracentrifugation. Biophys J 76:2288–2296
doi: 10.1016/S0006-3495(99)77384-4
pubmed: 10096923
pmcid: 1300201
Schuck P, MacPhee CE, Howlett GJ (1998) Determination of sedimentation coefficients for small peptides. Biophys J 74:466–474
doi: 10.1016/S0006-3495(98)77804-X
pubmed: 9449347
pmcid: 1299399
Schuck P, Zhao H, Brautigam CA, Ghirlando R (2016) Basic principles of analytical ultracentrifugation. CRC Press, Boca Raton
doi: 10.1201/b19028
Stafford WF (1992) Boundary analysis in sedimentation transport experiments: a procedure for obtaining sedimentation coefficient distributions using the time derivative of the concentration profile. Anal Biochem 203:295–301
doi: 10.1016/0003-2697(92)90316-Y
pubmed: 1416025
Stafford WF, Sherwood PJ (2004) Analysis of heterologous interacting systems by sedimentation velocity: curve fitting algorithms for estimation of sedimentation coefficients, equilibrium and kinetic constants. Biophys Chem 108:231–243
doi: 10.1016/j.bpc.2003.10.028
pubmed: 15043932
Todd GP, Haschemeyer RH (1983) Generalized finite element solution to one-dimensional flux problems. Biophys Chem 17:321–336
doi: 10.1016/0301-4622(83)80017-9
pubmed: 17000440
Virtanen P, Gommers R, Oliphant TE et al (2020) SciPy 1.0: fundamental algorithms for scientific computing in python. Nat Methods 17:261–272
doi: 10.1038/s41592-019-0686-2
pubmed: 32015543
pmcid: 7056644
Zhao H, Ghirlando R, Piszczek G et al (2013) Recorded scan times can limit the accuracy of sedimentation coefficients in analytical ultracentrifugation. Anal Biochem 437:104–108
doi: 10.1016/j.ab.2013.02.011
pubmed: 23458356
pmcid: 3676908