Simple and Versatile Nitrooxylation: Noncyclic Hypervalent Iodine Nitrooxylating Reagent.
Hypervalent Iodine
Nitrooxylation
Organic Nitrates
Reaction Mechanisms
Synthetic Methods
Journal
Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543
Informations de publication
Date de publication:
24 Apr 2023
24 Apr 2023
Historique:
received:
18
02
2023
medline:
10
3
2023
pubmed:
10
3
2023
entrez:
9
3
2023
Statut:
ppublish
Résumé
Organic nitrates are broadly applied as pharmaceuticals (acting as efficient nitric oxide donor), energetic materials, building blocks in organic synthesis, etc. However, practical and direct methods to access organic nitrates efficiently are still rare, mainly due to the lack of powerful nitrooxylating reagents. Herein, we report bench-stable and highly reactive noncyclic hypervalent iodine nitrooxylating reagents, oxybis(aryl-λ
Identifiants
pubmed: 36891989
doi: 10.1002/anie.202302521
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e202302521Subventions
Organisme : National Natural Science Foundation of China
ID : 21772122
Organisme : Natural Science Foundation of Shanghai
ID : 22ZR1445200
Organisme : Shanghai Shuguang Program
ID : 20SG44
Informations de copyright
© 2023 Wiley-VCH GmbH.
Références
D. Koshland, Science 1992, 258, 1861-1861.
Selected reviews on notric oxide, see:
M. Sato, Y. Umezawa, Methods Mol. Biol. 2021, 2240, 57-64;
K. Kashfi, Biochem. Pharmacol. 2020, 176, 114006;
J. Aliancy, W. D. Stamer, B. Wirostko, Ophthalmol. Ther. 2017, 6, 221-232;
Z. Huang, J. Fu, Y. Zhang, J. Med. Chem. 2017, 60, 7617-7635;
X. Zhou, J. Zhang, G. Feng, J. Shen, D. Kong, Q. Zhao, Curr. Med. Chem. 2016, 23, 2579-2601.
https://www.nobelprize.org/prizes/medicine/1998/summary/.
L. D. Bulbule, R. K. Godge, S. Magar, Syst. Rev. Pharm. 2022, 13, 291-295;
D. Tsikas, A. Surdacki, Anal. Biochem. 2022, 644, 113993;
M. S. França-Silva, C. M. Balarini, J. C. Cruz, B. A. Khan, P. H. Rampelotto, V. A. Braga, Molecules 2014, 19, 15314-15323;
R. A. M. Serafim, M. C. Primi, G. H. G. Trossini, E. I. Ferreira, Curr. Med. Chem. 2012, 19, 386-405;
G. R. J. Thatcher, Chem. Soc. Rev. 1998, 27, 331-337.
Selected reviews for organic nitrates associated with “hybrid drug”, see:
R. Sharma, J. Joubert, S. F. Malan, Mini-Rev. Med. Chem. 2018, 18, 1175-1198;
P. Kleczkowska, A. Kowalczyk, A. Lesniak, M. Bujalska-Zadrozny, Curr. Top. Med. Chem. 2017, 17, 875-894;
N. Kerru, P. Singh, N. Koorbanally, R. Raj, V. Kumar, Eur. J. Med. Chem. 2017, 142, 179-212;
N. Hulsman, J. P. Medema, C. Bos, A. Jongejan, R. Leurs, M. J. Smit, I. J. P. de Esch, D. Richel, M. Wijtmans, J. Med. Chem. 2007, 50, 2424-2431.
M. Takeuchi, N. L. Ng, Atmos. Chem. Phys. 2019, 19, 12749-12766;
D. E. Chavez, S. K. Hanson, J. M. Veauthier, D. A. Parrish, Angew. Chem. Int. Ed. 2013, 52, 6876-6879;
Angew. Chem. 2013, 125, 7014-7017;
M. A. Francisco, J. Krylowski, Ind. Eng. Chem. Res. 2005, 44, 5439-5446;
R. Boschan, R. T. Merrow, R. W. Van Dolah, Chem. Rev. 1955, 55, 485-510.
G. H. Hakimalahi, H. Sharghi, H. Zarrinmayeh, A. Khalafi-Nezhad, Helv. Chim. Acta 1984, 67, 906-915.
Y. A. Volkova, O. A. Ivanova, E. M. Budynina, E. B. Averina, T. S. Kuznetsova, N. S. Zefirov, Tetrahedron Lett. 2008, 49, 3935-3938;
W. Wu, Q. Liu, Y. Shen, R. Li, L. Wu, Tetrahedron Lett. 2007, 48, 1653-1656.
T. Sueda, M. Shoji, K. Nishide, Tetrahedron Lett. 2008, 49, 5070-5072;
Y. Tomita, Y. Ichikawa, Y. Itoh, K. Kawada, K. Mikami, Tetrahedron Lett. 2007, 48, 8922-8925.
S. Kamijo, Y. Amaoka, M. Inoue, Tetrahedron Lett. 2011, 52, 4654-4657.
E. Baciocchi, T. Del Giacco, S. M. Murgia, G. V. Sebastiani, Tetrahedron 1988, 44, 6651-6660.
W. S. Trahanovsky, M. D. Robbins, J. Am. Chem. Soc. 1971, 93, 5256-5258.
B. Yang, S.-M. Hou, S.-Y. Ding, X.-N. Zhao, Y. Gao, X. Wang, S.-D. Yang, Adv. Synth. Catal. 2018, 360, 4470-4474.
B. Li, Y.-Q. Han, X. Yang, B.-F. Shi, Org. Lett. 2020, 22, 9719-9723.
Y. Xue, H. S. Park, C. Jiang, J.-Q. Yu, ACS Catal. 2021, 11, 14188-14193.
M. Gao, K. Zhou, B. Xu, Adv. Synth. Catal. 2019, 361, 2031-2036.
S. Thurow, A. A. G. Fernandes, Y. Quevedo-Acosta, M. F. de Oliveira, M. G. de Oliveira, I. D. Jurberg, Org. Lett. 2019, 21, 6909-6913.
B. Li, X. Cheng, Z.-Y. Guan, S.-Y. Li, T. Huo, G. Cheng, Y.-H. Fan, F.-S. Zhou, Q.-H. Deng, Org. Chem. Front. 2020, 7, 3509-3514;
C.-J. Wang, J. Sun, W. Zhou, J. Xue, B.-T. Ren, G.-Y. Zhang, Y.-L. Mei, Q.-H. Deng, Org. Lett. 2019, 21, 7315-7319.
C. He, Z. Wu, Y. Zhou, W. Cao, X. Feng, Org. Chem. Front. 2022, 9, 703-708.
R. Calvo, A. Le Tellier, T. Nauser, D. Rombach, D. Nater, D. Katayev, Angew. Chem. Int. Ed. 2020, 59, 17162-17168;
Angew. Chem. 2020, 132, 17312-17319.
Selected reviews on hypervalent iodine, see:
F. V. Singh, S. E. Shetgaonkar, M. Krishnan, T. Wirth, Chem. Soc. Rev. 2022, 51, 8102-8139;
X.-G. Yang, Z.-N. Hu, M.-C. Jia, F.-H. Du, C. Zhang, Synlett 2021, 32, 1289-1296;
V. V. Zhdankin, Arkivoc 2020, https://doi.org/10.24820/ark.5550190.p011.145;
K. Matsumoto, M. Nakajima, T. Nemoto, J. Phys. Org. Chem. 2019, 32, e3961;
A. Yoshimura, V. V. Zhdankin, Chem. Rev. 2016, 116, 3328-3435;
Y. Li, D. P. Hari, M. V. Vita, J. Waser, Angew. Chem. Int. Ed. 2016, 55, 4436-4454;
Angew. Chem. 2016, 128, 4512-4531;
J. Charpentier, N. Fruh, A. Togni, Chem. Rev. 2015, 115, 650-682;
E. A. Merritt, B. Olofsson, Angew. Chem. Int. Ed. 2009, 48, 9052-9070;
Angew. Chem. 2009, 121, 9214-9234;
P. J. Stang, V. V. Zhdankin, Chem. Rev. 1996, 96, 1123-1178.
M. Iinuma, K. Moriyama, H. Togo, Synlett 2012, 23, 2663-2666.
W. E. Dasent, T. C. Waddington, J. Chem. Soc. 1960, 3350-3356.
J. C. Sarie, J. Neufeld, C. G. Daniliuc, R. Gilmour, Synthesis 2019, 51, 4408-4416.
S. P. Green, K. M. Wheelhouse, A. D. Payne, J. P. Hallett, P. W. Miller, J. A. Bull, Angew. Chem. Int. Ed. 2020, 59, 15798-15802;
Angew. Chem. 2020, 132, 15930-15934;
Thermal Safety of Chemical Processes, (Ed.: F. Stoessel), Wiley-VCH, Weinheim, 2008.
J. Zhang, Z. Wang, Y. Hsieh, B. Wang, H. Huang, J. Yang, J. Zhang, RSC Adv. 2020, 10, 2519-2525;
13.4.2 Test 3a-ii BAM Fallhammer, page 75 and 13.5.1 Test 3b-i BAM friction apparatus, page 104 in 13 U. M. Regulations, UN Recommendations on the Transport of Dangerous Goods, Manual of Tests and Criteria, 5th edn., United Nations Publication, New York, 2009; according to UN recommendations on the transport of dangerous goods: impact, insensitive >40 J, less sensitive ≥35 J, sensitive ≥4 J, very sensitive ≤3 J; friction, insensitive >360 N, less sensitive 360 N, 80 N <sensitive <360 N, very sensitive <80 N, extremely sensitive <10 N.
Deposition numbers 2024938 (for 2 a), 2130176 (for 6 a), and 2130175 (for 31) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
Representative reviews, see:
H. Yan, G. S. Smith, F.-E. Chen, Green Synth. Catal. 2022, 3, 219-226;
T. R. McDonald, L. R. Mills, M. S. West, S. A. L. Rousseaux, Chem. Rev. 2021, 121, 3-79;
V. Pirenne, B. Muriel, J. Waser, Chem. Rev. 2021, 121, 227-263;
Y. Liu, Q.-L. Wang, Z. Chen, C.-S. Zhou, B.-Q. Xiong, P.-L. Zhang, C.-A. Yang, Q. Zhou, Beilstein J. Org. Chem. 2019, 15, 256-278;
X. Cai, W. Liang, M. Dai, Tetrahedron 2019, 75, 193-208;
A. Nikolaev, A. Orellana, Synthesis 2016, 48, 1741-1768;
O. G. Kulinkovich, Chem. Rev. 2003, 103, 2597-2632.
Selected examples on regioselective ring-opening reaction of cyclopropyl silyl ethers, see:
L. R. Mills, C. Zhou, E. Fung, S. A. L. Rousseaux, Org. Lett. 2019, 21, 8805-8809;
E. Hasegawa, K. Nemoto, R. Nagumo, E. Tayama, H. Iwamoto, J. Org. Chem. 2016, 81, 2692-2703;
H. Tsuchida, M. Tamura, E. Hasegawa, J. Org. Chem. 2009, 74, 2467-2475.
Although the profiles of the corresponding 1H NMR monitoring experiments were not clear owing to the paramagnetic character of TEMPO, the preliminary data also indicated the similar results (see the details in Figures S8-S10).
Prof. Katayev found the nitrooxylation of oxindoles and 1 were occurred only under photoredox catalysis in Ref. [20].