COL1A1 and COL1A2 variants in Ehlers-Danlos syndrome phenotypes and COL1-related overlap disorder.
COL1A1
COL1A2
Ehlers-Danlos syndrome
OIEDS
hypermobile EDS
osteogenesis imperfecta
Journal
American journal of medical genetics. Part C, Seminars in medical genetics
ISSN: 1552-4876
Titre abrégé: Am J Med Genet C Semin Med Genet
Pays: United States
ID NLM: 101235745
Informations de publication
Date de publication:
06 2023
06 2023
Historique:
received:
22
02
2023
accepted:
27
02
2023
medline:
22
6
2023
pubmed:
11
3
2023
entrez:
10
3
2023
Statut:
ppublish
Résumé
Pathogenic variants in COL1A1 and COL1A2 are involved in osteogenesis imperfecta (OI) and, rarely, Ehlers-Danlos syndrome (EDS) subtypes and OI-EDS overlap syndromes (OIEDS1 and OIEDS2, respectively). Here we describe a cohort of 34 individuals with likely pathogenic and pathogenic variants in COL1A1 and COL1A2, 15 of whom have potential OIEDS1 (n = 5) or OIEDS2 (n = 10). A predominant OI phenotype and COL1A1 frameshift variants are present in 4/5 cases with potential OIEDS1. On the other hand, 9/10 potential OIEDS2 cases have a predominant EDS phenotype, including four with an initial diagnosis of hypermobile EDS (hEDS). An additional case with a predominant EDS phenotype had a COL1A1 arginine-to-cysteine variant that was originally misclassified as a variant of uncertain significance despite this type of variant being associated with classical EDS with vascular fragility. Vascular/arterial fragility was observed in 4/15 individuals (including one individual with an original diagnosis of hEDS), which underscores the unique clinical surveillance and management needs in these patients. In comparison to previously described OIEDS1/2, we observed differentiating features that should be considered to refine currently proposed criteria for genetic testing in OIEDS, which will be beneficial for diagnosis and management. Additionally, these results highlight the importance of gene-specific knowledge for informed variant classification and point to a potential genetic resolution (COL1A2) for some cases of clinically diagnosed hEDS.
Identifiants
pubmed: 36896471
doi: 10.1002/ajmg.c.32038
doi:
Substances chimiques
Collagen Type I, alpha2 Subunit
0
Collagen Type I, alpha 1 Chain
0
Collagen Type I
0
COL1A2 protein, human
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
147-159Informations de copyright
© 2023 Wiley Periodicals LLC.
Références
Ackermann, A. M., & Levine, M. A. (2017). Compound heterozygous mutations in COL1A1 associated with an atypical form of type I osteogenesis imperfecta. American Journal of Medical Genetics. Part A, 173(7), 1907-1912. https://doi.org/10.1002/ajmg.a.38238
Balasubramanian, M., Wagner, B. E., Peres, L. C., Sobey, G. J., Parker, M. J., Dalton, A., … Bishop, N. J. (2015). Ultrastructural and histological findings on examination of skin in osteogenesis imperfecta: A novel study. Clinical Dysmorphology, 24(2), 45-54. https://doi.org/10.1097/MCD.0000000000000066
Bardai, G., Ward, L. M., Trejo, P., Moffatt, P., Glorieux, F. H., & Rauch, F. (2017). Molecular diagnosis in children with fractures but no extraskeletal signs of osteogenesis imperfecta. Osteoporosis International, 28(7), 2095-2101. https://doi.org/10.1007/s00198-017-4031-2
Brady, A. F., Demirdas, S., Fournel-Gigleux, S., Ghali, N., Giunta, C., Kapferer-Seebacher, I., … Malfait, F. (2017). The Ehlers-Danlos syndromes, rare types. American Journal of Medical Genetics. Part C, Seminars in Medical Genetics, 175(1), 70-115. https://doi.org/10.1002/ajmg.c.31550
Budsamongkol, T., Intarak, N., Theerapanon, T., Yodsanga, S., Porntaveetus, T., & Shotelersuk, V. (2019). A novel mutation in COL1A2 leads to osteogenesis imperfecta/Ehlers-Danlos overlap syndrome with brachydactyly. Genes & Diseases, 6(2), 138-146. https://doi.org/10.1016/j.gendis.2019.03.001
Cabral, W. A., Makareeva, E., Colige, A., Letocha, A. D., Ty, J. M., Yeowell, H. N., … Marini, J. C. (2005). Mutations near amino end of alpha1(I) collagen cause combined osteogenesis imperfecta/Ehlers-Danlos syndrome by interference with N-propeptide processing. The Journal of Biological Chemistry, 280(19), 19259-19269. https://doi.org/10.1074/jbc.M414698200
Cabral, W. A., Makareeva, E., Letocha, A. D., Scribanu, N., Fertala, A., Steplewski, A., … Marini, J. C. (2007). Y-position cysteine substitution in type I collagen (alpha1(I) R888C/p.R1066C) is associated with osteogenesis imperfecta/Ehlers-Danlos syndrome phenotype. Human Mutation, 28(4), 396-405. https://doi.org/10.1002/humu.20456
Chiarelli, N., Ritelli, M., Zoppi, N., & Colombi, M. (2019). Cellular and molecular mechanisms in the pathogenesis of classical, vascular, and hypermobile Ehlers-Danlos syndromes. Genes (Basel), 10(8), 609-630. https://doi.org/10.3390/genes10080609
Chiodo, A. A., Hockey, A., & Cole, W. G. (1992). A base substitution at the splice acceptor site of intron 5 of the COL1A2 gene activates a cryptic splice site within exon 6 and generates abnormal type I procollagen in a patient with Ehlers-Danlos syndrome type VII. The Journal of Biological Chemistry, 267(9), 6361-6369.
Colombi, M., Dordoni, C., Chiarelli, N., & Ritelli, M. (2015). Differential diagnosis and diagnostic flow chart of joint hypermobility syndrome/ehlers-danlos syndrome hypermobility type compared to other heritable connective tissue disorders. American Journal of Medical Genetics. Part C, Seminars in Medical Genetics, 169C(1), 6-22. https://doi.org/10.1002/ajmg.c.31429
Colombi, M., Dordoni, C., Venturini, M., Zanca, A., Calzavara-Pinton, P., & Ritelli, M. (2017). Delineation of Ehlers-Danlos syndrome phenotype due to the c.934C>T, p.(Arg312Cys) mutation in COL1A1: Report on a three-generation family without cardiovascular events, and literature review. American Journal of Medical Genetics. Part A, 173(2), 524-530. https://doi.org/10.1002/ajmg.a.38035
Dalgleish, R. (1997). The human type I collagen mutation database. Nucleic Acids Research, 25(1), 181-187. https://doi.org/10.1093/nar/25.1.181
Demmler, J. C., Atkinson, M. D., Reinhold, E. J., Choy, E., Lyons, R. A., & Brophy, S. T. (2019). Diagnosed prevalence of Ehlers-Danlos syndrome and hypermobility spectrum disorder in Wales, UK: A national electronic cohort study and case-control comparison. BMJ Open, 9(11), e031365. https://doi.org/10.1136/bmjopen-2019-031365
Dhooge, T., Syx, D., Hermanns-Le, T., Hausser, I., Mortier, G., Zonana, J., … Malfait, F. (2021). Caffey disease is associated with distinct arginine to cysteine substitutions in the proalpha1(I) chain of type I procollagen. Genetics in Medicine, 23(12), 2378-2385. https://doi.org/10.1038/s41436-021-01274-y
Gentile, F. V., Zuntini, M., Parra, A., Battistelli, L., Pandolfi, M., Pals, G., & Sangiorgi, L. (2012). Validation of a quantitative PCR-high-resolution melting protocol for simultaneous screening of COL1A1 and COL1A2 point mutations and large rearrangements: Application for diagnosis of osteogenesis imperfecta. Human Mutation, 33(12), 1697-1707. https://doi.org/10.1002/humu.22146
Gnoli, M., Brizola, E., Tremosini, M., Pedrini, E., Maioli, M., Mosca, M., … Sangiorgi, L. (2021). COL1-related disorders: Case report and review of overlapping syndromes. Frontiers in Genetics, 12, 640558. https://doi.org/10.3389/fgene.2021.640558
Johnson, M. T., Morrison, S., Heeger, S., Mooney, S., Byers, P. H., & Robin, N. H. (2002). A variant of osteogenesis imperfecta type IV with resolving kyphomelia is caused by a novel COL1A2 mutation. Journal of Medical Genetics, 39(2), 128-132. https://doi.org/10.1136/jmg.39.2.128
Ju, M., Bai, X., Zhang, T., Lin, Y., Yang, L., Zhou, H., … Li, G. (2020). Mutation spectrum of COL1A1/COL1A2 screening by high-resolution melting analysis of Chinese patients with osteogenesis imperfecta. Journal of Bone and Mineral Metabolism, 38(2), 188-197. https://doi.org/10.1007/s00774-019-01039-3
Korkko, J., Kuivaniemi, H., Paassilta, P., Zhuang, J., Tromp, G., DePaepe, A., … Ala-Kokko, L. (1997). Two new recurrent nucleotide mutations in the COL1A1 gene in four patients with osteogenesis imperfecta: About one-fifth are recurrent. Human Mutation, 9(2), 148-156. https://doi.org/10.1002/(SICI)1098-1004(1997)9:2<148::AID-HUMU7>3.0.CO;2-5
Kulas Soborg, M. L., Leganger, J., Quitzau Mortensen, L., Rosenberg, J., & Burcharth, J. (2017). Establishment and baseline characteristics of a nationwide Danish cohort of patients with Ehlers-Danlos syndrome. Rheumatology (Oxford), 56(5), 763-767. https://doi.org/10.1093/rheumatology/kew478
Landrum, M. J., Lee, J. M., Benson, M., Brown, G. R., Chao, C., Chitipiralla, S., … Maglott, D. R. (2018). ClinVar: Improving access to variant interpretations and supporting evidence. Nucleic Acids Research, 46(D1), D1062-D1067. https://doi.org/10.1093/nar/gkx1153
Lee, K. S., Song, H. R., Cho, T. J., Kim, H. J., Lee, T. M., Jin, H. S., … Koo, S. K. (2006). Mutational spectrum of type I collagen genes in Korean patients with osteogenesis imperfecta. Human Mutation, 27(6), 599. https://doi.org/10.1002/humu.9423
Lindahl, K., Astrom, E., Rubin, C. J., Grigelioniene, G., Malmgren, B., Ljunggren, O., & Kindmark, A. (2015). Genetic epidemiology, prevalence, and genotype-phenotype correlations in the Swedish population with osteogenesis imperfecta. European Journal of Human Genetics, 23(8), 1042-1050. https://doi.org/10.1038/ejhg.2015.81
Lu, Y., Wang, Y., Rauch, F., Li, H., Zhang, Y., Zhai, N., … Han, J. (2018). Osteogenesis imperfecta type III/Ehlers-Danlos overlap syndrome in a Chinese man. Intractable Rare Dis Res, 7(1), 37-41. https://doi.org/10.5582/irdr.2018.01010
Lund, A., Joensen, F., Christensen, E., Duno, M., Skovby, F., & Schwartz, M. (2008). A novel arginine-to-cysteine substitution in the triple helical region of the alpha1(I) collagen chain in a family with an osteogenesis imperfecta/Ehlers-Danlos phenotype. Clinical Genetics, 73(1), 97-101. https://doi.org/10.1111/j.1399-0004.2007.00926.x
Makareeva, E., Sun, G., Mirigian, L. S., Mertz, E. L., Vera, J. C., Espinoza, N. A., … Leikin, S. (2018). Substitutions for arginine at position 780 in triple helical domain of the alpha1(I) chain alter folding of the type I procollagen molecule and cause osteogenesis imperfecta. PLoS One, 13(7), e0200264. https://doi.org/10.1371/journal.pone.0200264
Malfait, F., Francomano, C., Byers, P., Belmont, J., Berglund, B., Black, J., … Tinkle, B. (2017). The 2017 international classification of the Ehlers-Danlos syndromes. American Journal of Medical Genetics. Part C, Seminars in Medical Genetics, 175(1), 8-26. https://doi.org/10.1002/ajmg.c.31552
Malfait, F., Symoens, S., Goemans, N., Gyftodimou, Y., Holmberg, E., Lopez-Gonzalez, V., … De Paepe, A. (2013). Helical mutations in type I collagen that affect the processing of the amino-propeptide result in an osteogenesis imperfecta/Ehlers-Danlos syndrome overlap syndrome. Orphanet Journal of Rare Diseases, 8, 78. https://doi.org/10.1186/1750-1172-8-78
Marini, J. C., Forlino, A., Bachinger, H. P., Bishop, N. J., Byers, P. H., Paepe, A., … Semler, O. (2017). Osteogenesis imperfecta. Nature Reviews. Disease Primers, 3, 17052. https://doi.org/10.1038/nrdp.2017.52
Marini, J. C., Forlino, A., Cabral, W. A., Barnes, A. M., San Antonio, J. D., Milgrom, S., … Byers, P. H. (2007). Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: Regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans. Human Mutation, 28(3), 209-221. https://doi.org/10.1002/humu.20429
Morlino, S., Micale, L., Ritelli, M., Rohrbach, M., Zoppi, N., Vandersteen, A., … Castori, M. (2020). COL1-related overlap disorder: A novel connective tissue disorder incorporating the osteogenesis imperfecta/Ehlers-Danlos syndrome overlap. Clinical Genetics, 97(3), 396-406. https://doi.org/10.1111/cge.13683
Nicholls, A. C., Valler, D., Wallis, S., & Pope, F. M. (2001). Homozygosity for a splice site mutation of the COL1A2 gene yields a non-functional pro(alpha)2(I) chain and an EDS/OI clinical phenotype. Journal of Medical Genetics, 38(2), 132-136. https://doi.org/10.1136/jmg.38.2.132
Raff, M. L., Craigen, W. J., Smith, L. T., Keene, D. R., & Byers, P. H. (2000). Partial COL1A2 gene duplication produces features of osteogenesis imperfecta and Ehlers-Danlos syndrome type VII. Human Genetics, 106(1), 19-28. https://doi.org/10.1007/s004390051004
Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., … Committee, A. L. Q. A. (2015). Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine, 17(5), 405-424. https://doi.org/10.1038/gim.2015.30
Roschger, P., Fratzl-Zelman, N., Misof, B. M., Glorieux, F. H., Klaushofer, K., & Rauch, F. (2008). Evidence that abnormal high bone mineralization in growing children with osteogenesis imperfecta is not associated with specific collagen mutations. Calcified Tissue International, 82(4), 263-270. https://doi.org/10.1007/s00223-008-9113-x
Sciluna, K. F. M., Farrugia, R., & Borg, I. (2021). Hypermobile Ehlers-Danlos syndrome: A review and a critical appraisal of published research to date. Clinical Genetics, 101(1), 20-31.
Shi, X., Lu, Y., Wang, Y., Zhang, Y. A., Teng, Y., Han, W., … Han, J. (2015). Heterozygous mutation of c.3521C>T in COL1A1 may cause mild osteogenesis imperfecta/Ehlers-Danlos syndrome in a Chinese family. Intractable & Rare Diseases Research, 4(1), 49-53. https://doi.org/10.5582/irdr.2014.01039
Symoens, S., Nuytinck, L., Legius, E., Malfait, F., Coucke, P. J., & De Paepe, A. (2004). Met>Val substitution in a highly conserved region of the pro-alpha1(I) collagen C-propeptide domain causes alternative splicing and a mild EDS/OI phenotype. Journal of Medical Genetics, 41(7), e96. https://doi.org/10.1136/jmg.2003.014589
Takeda, R., Yamaguchi, T., Hayashi, S., Sano, S., Kawame, H., Kanki, S., … Kosho, T. (2022). Clinical and molecular features of patients with COL1-related disorders: Implications for the wider spectrum and the risk of vascular complications. American Journal of Medical Genetics. Part A, 188(9), 2560-2575. https://doi.org/10.1002/ajmg.a.62887
Tinkle, B., Castori, M., Berglund, B., Cohen, H., Grahame, R., Kazkaz, H., & Levy, H. (2017). Hypermobile Ehlers-Danlos syndrome (a.k.a. Ehlers-Danlos syndrome type III and Ehlers-Danlos syndrome hypermobility type): Clinical description and natural history. American Journal of Medical Genetics. Part C, Seminars in Medical Genetics, 175(1), 48-69. https://doi.org/10.1002/ajmg.c.31538
Vandersteen, A. M., Lund, A. M., Ferguson, D. J., Sawle, P., Pollitt, R. C., Holder, S. E., … Pope, F. M. (2014). Four patients with Sillence type I osteogenesis imperfecta and mild bone fragility, complicated by left ventricular cardiac valvular disease and cardiac tissue fragility caused by type I collagen mutations. American Journal of Medical Genetics. Part A, 164A(2), 386-391. https://doi.org/10.1002/ajmg.a.36285
Venturi, G., Tedeschi, E., Mottes, M., Valli, M., Camilot, M., Viglio, S., … Tato, L. (2006). Osteogenesis imperfecta: Clinical, biochemical and molecular findings. Clinical Genetics, 70(2), 131-139. https://doi.org/10.1111/j.1399-0004.2006.00646.x
Willing, M. C., Deschenes, S. P., Scott, D. A., Byers, P. H., Slayton, R. L., Pitts, S. H., … Roberts, E. J. (1994). Osteogenesis imperfecta type I: Molecular heterogeneity for COL1A1 null alleles of type I collagen. American Journal of Human Genetics, 55(4), 638-647.
Willing, M. C., Deschenes, S. P., Slayton, R. L., & Roberts, E. J. (1996). Premature chain termination is a unifying mechanism for COL1A1 null alleles in osteogenesis imperfecta type I cell strains. American Journal of Human Genetics, 59(4), 799-809.
Zhang, Z. L., Zhang, H., Ke, Y. H., Yue, H., Xiao, W. J., Yu, J. B., … Fu, W. Z. (2012). The identification of novel mutations in COL1A1, COL1A2, and LEPRE1 genes in Chinese patients with osteogenesis imperfecta. Journal of Bone and Mineral Metabolism, 30(1), 69-77. https://doi.org/10.1007/s00774-011-0284-6
Zhytnik, L., Maasalu, K., Reimann, E., Prans, E., Koks, S., & Martson, A. (2017). Mutational analysis of COL1A1 and COL1A2 genes among Estonian osteogenesis imperfecta patients. Human Genomics, 11(1), 19. https://doi.org/10.1186/s40246-017-0115-5