Nickel-Catalyzed Sulfonylation of Aryl Bromides Enabled by Potassium Metabisulfite as a Uniquely Effective SO

Mechanism Nickel Reductive Coupling Sulfonylation

Journal

Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543

Informations de publication

Date de publication:
02 May 2023
Historique:
received: 29 11 2022
medline: 11 3 2023
pubmed: 11 3 2023
entrez: 10 3 2023
Statut: ppublish

Résumé

The development and mechanistic investigation of a nickel-catalyzed sulfonylation of aryl bromides is disclosed. The reaction proceeds in good yields for a variety of substrates and utilizes an inexpensive, stench-free, inorganic sulfur salt (K

Identifiants

pubmed: 36897277
doi: 10.1002/anie.202217623
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e202217623

Informations de copyright

© 2023 Wiley-VCH GmbH.

Références

G. J. P. Dijkgraaf, B. Alicke, L. Weinman, T. Januario, K. West, Z. Modrusan, D. Burdick, T. Goldsmith, K. Robarge, D. Sutherlin, S. J. Scale, S. E. Gould, R. L. Yauch, F. J. de Sauvage, Cancer Res. 2011, 71, 435-444.
G. Mitchell, D. W. Bartlett, T. E. M. Fraser, T. R. Hawkes, D. C. Holt, J. K. Townson, R. A. Wichert, Pest Manage. Sci. 2001, 57, 120-128.
P. Rattanapanadda, H. C. Kuo, T. W. Vickroy, C.-H. Sung, T. Rairat, T.-L. Lin, S.-Y. Yeh, C.-C. Chou, Front. Microbiol. 2019, 10, 2430.
M. P. Curran, C. M. Perry, Drugs 2001, 61, 2123-2150.
R. Xu, K. Wang, J. P. Rizzi, H. Huang, J. A. Grina, S. T. Schlachter, B. Wang, P. M. Wehn, H. Yang, D. D. Dixon, R. M. Czerwinski, X. Du, E. L. Ged, G. Han, H. Tan, T. Wong, S. Xie, J. A. Josey, E. M. Wallace, J. Med. Chem. 2019, 62, 6876-6893.
 
N.-W. Liu, S. Liang, G. Manolikakes, Synthesis 2016, 48, 1939-1973;
D. Joseph, M. A. Idris, J. Chen, S. Lee, ACS Catal. 2021, 11, 4169-4204.
For lead references on the coupling of sulfinic acid derivatives, see:
J. Zhao, S. Niu, X. Jiang, Y. Jiang, X. Zhang, T. Sun, D. Ma, J. Org. Chem. 2018, 83, 6589-6598;
H. Yue, C. Zhu, M. Rueping, Angew. Chem. Int. Ed. 2018, 57, 1371-1375;
N.-W. Liu, S. Liang, N. Margraf, S. Shaaban, V. Luciano, M. Drost, G. Manolikakes, Eur. J. Org. Chem. 2018, 1208-1210;
N.-W. Liu, K. Hofman, A. Herbert, G. Manolikakes, Org. Lett. 2018, 20, 760-763.
Recent report for a formal sulfonylative cross-coupling have shown that sulfinates can be prepared in situ followed by cross-coupling of the sulfinate salt, see:
Y. Meng, M. Wang, X. Jiang, Angew. Chem. Int. Ed. 2020, 59, 1346-1353;
E. J. Emmett, B. R. Hayter, M. C. Willis, Angew. Chem. Int. Ed. 2013, 52, 12679-12683;
A. Adenot, J. Char, N. von Wolff, G. Lefevre, L. Anthore-Dalion, T. Cantat, Chem. Commun. 2019, 55, 12924-12927.
For a review on SO2 surrogates, see: E. J. Emmett, M. C. Willis, Asian J. Org. Chem. 2015, 4, 602-611.
D. Bhattacherjee, M. Rahman, S. Ghosh, A. K. Bagdi, G. V. Zyryanov, O. N. Chupakhin, P. Das, A. Hajra, Adv. Synth. Catal. 2021, 363, 1597-1624.
Reports of sulfonylative cross-coupling reactions of aryl halides to prepare aryl-aryl sulfones are similarly rare, see:
Y. Chen, M. C. Willis, Chem. Sci. 2017, 8, 3249-3253;
A. Adenot, L. Anthore-Dalion, E. Nicolas, J.-C. Berthet, P. Thuery, T. Cantat, Chem. Eur. J. 2021, 27, 18047-18053.
 
E. J. Emmett, B. R. Hayter, M. C. Willis, Angew. Chem. Int. Ed. 2014, 53, 10204-10208;
C. S. Richards-Taylor, D. C. Blackemore, M. C. Willis, Chem. Sci. 2014, 5, 222-228.
A. Shavnya, S. B. Coffey, A. C. Smith, V. Mascitti, Org. Lett. 2013, 15, 6226-6229.
Similar reductive sulfinations to prepare sulfonyl fluorides have been reported by Willis and Ball, see:
A. T. Davies, J. M. Curto, S. W. Bagley, M. C. Willis, Chem. Sci. 2017, 8, 1233-1237;
A. L. Tribby, I. Rodriguez, S. Shariffudin, N. D. Ball, Org. Lett. 2017, 19, 2294-2299.
Reactions of arylboronic acid derivatives have also been used to prepare sulfinates, see:
M. W. Johnson, S. W. Bagley, N. P. Mankad, R. G. Bergman, V. Mascitti, F. D. Toste, Angew. Chem. Int. Ed. 2014, 53, 4404-4407;
P. K. T. Lo, Y. Chen, M. C. Willis, ACS Catal. 2019, 9, 10668-10673;
Y. Zhang, H. Zhu, Q. Fan, L. Yang, Z. Xie, Z.-G. Le, ChemCatChem 2022, 14, e202101716;
K. Gulbe, M. Turks, J. Org. Chem. 2020, 85, 5660-5669.
DABSO cost=$5190/mol SO2 equiv, Sigma-Aldrich 01/24/2022.
K2S2O5 cost=$43.46/mol SO2 equiv, Sigma-Aldrich 01/24/2022.
For recent reviews on the use of metabisulfite salts as SO2 surrogates, see:
S. Ye, G. Qiu, J. Wu, Chem. Commun. 2019, 55, 1013-1019;
S. Ye, M. Yang, J. Wu, Chem. Commun. 2020, 56, 4145-4155;
A. K. Sahoo, A. Dahita, A. Rakshit, B. K. Patel, SynOpen 2021, 5, 232-251.
T. S.-B. Lou, Y. Kawamata, T. Ewing, G. Correa-Otero, M. Collins, P. S. Baran, Angew. Chem. Int. Ed. 2022, 61, e202208080.
M. C. Haibach, A. R. Ickes, A. M. Wilders, S. Shekhar, Org. Process Res. Dev. 2020, 24, 2428-2444.
F. Peng, L. Tan, L. Chen, S. M. Dalby, D. DiRocco, J. Duan, M. Feng, G. Gong, H. Guo, J. C. Hethcox, L. Jin, H. C. Johnson, J. Kim, D. Le, Y. Lin, W. Liu, J. Shen, Y. Wan, C. Xiao, B. Xiang, Q. Xiang, J. Xu, L. Yan, W. Yang, H. Ye, Y. Yu, J. Zhang, Org. Process Res. Dev. 2022, 26, 508-515.
Ultimately, we found the use of TMP in this reaction to provide lower yields, but later solved these issues in process development to deliver a scalable Ni-catalyzed sulfonylation using a non-toxic methylating reaction for manufacture. Report forthcoming.
Z.-T. He, H. Li, A. M. Haydl, G. T. Whiteker, J. F. Hartwig, J. Am. Chem. Soc. 2018, 140, 17197-17202.
M. Baidya, S. Kobayashi, H. Mayr, J. Am. Chem. Soc. 2010, 132, 4796-4805.
While TBAB was found to slightly improve the sulfonylation step presumably by facilitating dissolution of the potassium formate to facilitate catalyst turnover, it is necessary for the methylation event. This is due to the insoluble nature of the sulfinate intermediate.
We imagine that TMP functions as a polar, aprotic solvent promoting the ArH pathway when using the more reactive HCO2K in entry 3, however the removal of TMP allows us to use the more reactive reagent in the sequential reaction (entry 7).
We have since continued development toward a manufacturing process utilizing TMP as a non-toxic methylating reagent. These parameters are not feasible on smaller scales and it was decided that methyliodide, despite its toxicity, was suitable on smaller scales. The development of this process will be reported in due course.
Presumably either via the formation of H2 or HCl, though no further investigation was made into the mechanism of catalyst activation.
When utilized ex situ, K2S2O5 has been shown to thermally decompose to generate SO2 for the direct use of SO2 in sulfonylation reactions, thereby acting more like DABSO.[8c]
B. Janković, S. Mentus, M. Janković, J. Phys. Chem. Solids 2008, 69, 1923-1933.
SO2 used a solution in acetonitrile prepared by sparging dry acetonitrile with SO2 followed by titration to determine concentration. The known concentration of SO2 in acetonitrile is 45.8 % (by weight), see: J. J. Byerley, G. L. Rempel, V. T. Le, J. Chem. Eng. Data 1980, 25, 55-56.
S.-I. Aizawa, T. Kawamoto, S. Nishigaki, A. Sasaki, J. Organomet. Chem. 2011, 696, 2471-2476.
 
J. W. Faller, J. C. Wilt, J. Parr, Org. Lett. 2004, 6, 1301-1304;
Y. Ji, E. R. Plata, C. S. Regens, M. Hay, M. Schmidt, R. Razler, Y. Qiu, P. Geng, U. Hsiao, T. Rosner, M. D. Eastgate, D. G. Blackmond, J. Am. Chem. Soc. 2015, 137, 13272-13281;
Y. Ji, H. Li, A. Hyde, Q. Chen, K. M. Belyk, K. W. Lexa, J. Yin, E. C. Sherer, R. T. Williamson, A. Brunskill, S. Ren, L.-C. Campeau, I. W. Davies, R. T. Ruck, Chem. Sci. 2017, 8, 2841-2851.
Deposition Number 2189725 contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
D. C. Moody, R. R. Ryan, Inorg. Chem. 1979, 18, 223-227.
In cases of low yielding substrates, the bromides either failed or were sluggish to react to form the sulfinate. Competing hydrodehalogenation of the aryl bromide can also be a substrate specific issue. The hydrodehalogention was solved separately during process optimization, which will be reported in due course. See Supporting Information for additional problematic substrates.

Auteurs

J Caleb Hethcox (JC)

Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA.

Heather C Johnson (HC)

Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA.

Jungchul Kim (J)

Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA.

Xiao Wang (X)

Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA.

Lili Cheng (L)

WuXi AppTec, Tianjin, 300457, China.

Yang Cao (Y)

Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA.

Melissa Tan (M)

Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA.

Daniel A DiRocco (DA)

Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA.

Yining Ji (Y)

Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA.

Classifications MeSH