Mechanical energy on anaerobic capacity during a supramaximal treadmill running in men: Is there influence between runners and active individuals?
blood lactate
excess postexercise oxygen consumption
mechanical work
non-mitochondrial metabolic pathways
physical fitness level
time to effort failure
Journal
Physiological reports
ISSN: 2051-817X
Titre abrégé: Physiol Rep
Pays: United States
ID NLM: 101607800
Informations de publication
Date de publication:
03 2023
03 2023
Historique:
received:
28
11
2022
accepted:
19
12
2022
pubmed:
11
3
2023
medline:
15
3
2023
entrez:
10
3
2023
Statut:
ppublish
Résumé
This study verified whether mechanical variables influence the anaerobic capacity outcome on treadmill running and whether these likely influences were dependent of running experience. Seventeen physical active and 18 amateur runners, males, performed a graded exercise test and constant load exhaustive running efforts at 115% of intensity associated to maximal oxygen consumption. During the constant load were determined the metabolic responses (i.e., gas exchange and blood lactate) to estimate the energetic contribution and anaerobic capacity as well as kinematic responses. The runners showed higher anaerobic capacity (16.6%; p = 0.005), but lesser time to exercise failure (-18.8%; p = 0.03) than active subjects. In addition, the stride length (21.4%; p = 0.00001), contact phase duration (-11.3%; p = 0.005), and vertical work (-29.9%; p = 0.015). For actives, the anaerobic capacity did not correlate significantly with any physiologic, kinematic, and mechanical variables and no regression model was fitted using the stepwise multiple regression, while to runners the anaerobic capacity was significantly correlated with phosphagen energetic contribution (r = 0.47; p = 0.047), external power (r = -0.51; p = 0.031), total work (r = -0.54; p = 0.020), external work (r = -0.62; p = 0.006), vertical work (r = -0.63; p = 0.008), and horizontal work (r = -0.61; p = 0.008), and the vertical work and phosphagen energetic contribution presented a coefficient of determination of 62% (p = 0.001). Based on findings, it is possible to assume that for active subjects, the mechanical variables have no influence over the anaerobic capacity, however, for experienced runners, the vertical work and phosphagen energetic contribution have relevant effect over anaerobic capacity output.
Identifiants
pubmed: 36898692
doi: 10.14814/phy2.15564
pmc: PMC10005891
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e15564Informations de copyright
© 2023 The Authors. Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society.
Références
Sports Med. 2010 Apr 1;40(4):285-302
pubmed: 20364874
Appl Physiol Nutr Metab. 2016 May;41(5):498-503
pubmed: 27109264
Eur J Appl Physiol. 2012 Nov;112(11):3921-30
pubmed: 22422028
Eur J Sport Sci. 2019 Jun;19(5):645-652
pubmed: 30452310
Appl Physiol Nutr Metab. 2015 Sep;40(9):931-7
pubmed: 26300016
Int J Sports Physiol Perform. 2016 Nov;11(8):1012-1017
pubmed: 26869146
Med Sci Sports Exerc. 2017 Jul;49(7):1412-1423
pubmed: 28263283
Scand J Med Sci Sports. 2011 Dec;21(6):e222-30
pubmed: 21210856
J Sports Sci. 1994 Oct;12(5):447-53
pubmed: 7799473
J Sports Med Phys Fitness. 2001 Sep;41(3):281-90
pubmed: 11533556
Int J Sports Med. 2012 Aug;33(8):613-20
pubmed: 22562729
Front Physiol. 2019 Apr 16;10:415
pubmed: 31040793
Proc Biol Sci. 2008 Feb 22;275(1633):411-8
pubmed: 18077249
Eur J Appl Physiol. 2015 Apr;115(4):651-73
pubmed: 25681108
Eur J Appl Physiol Occup Physiol. 1983;50(2):273-82
pubmed: 6681758
Int J Sports Med. 2017 Mar;38(3):226-232
pubmed: 28192833
Sci Rep. 2019 Dec 5;9(1):18422
pubmed: 31804565
J Sports Sci Med. 2008 Mar 01;7(1):54-9
pubmed: 24150134
PLoS One. 2017 Feb 9;12(2):e0172032
pubmed: 28182775
J Strength Cond Res. 2020 Sep;34(9):2465-2475
pubmed: 32205815
Int J Sports Med. 2007 Oct;28(10):836-43
pubmed: 17497577
J Biomech. 1996 Sep;29(9):1223-30
pubmed: 8872282
Pflugers Arch. 1997 Nov;434(6):678-84
pubmed: 9305998
J Sports Sci. 1996 Aug;14(4):321-7
pubmed: 8887211
Nat Metab. 2020 Sep;2(9):817-828
pubmed: 32747792
Physiol Rep. 2023 Mar;11(5):e15564
pubmed: 36898692
Respir Physiol. 1999 Dec 1;118(2-3):103-15
pubmed: 10647856
Int J Sports Med. 1985 Aug;6(4):197-201
pubmed: 4044103
Scand J Med Sci Sports. 2022 Feb;32(2):402-413
pubmed: 34706104
J Strength Cond Res. 2010 Apr;24(4):942-9
pubmed: 20300034
Int J Sports Med. 2015 Dec;36(14):1156-62
pubmed: 26422055
J Appl Physiol (1985). 1988 Jan;64(1):50-60
pubmed: 3356666
J Exp Biol. 1995 Feb;198(Pt 2):379-93
pubmed: 7699313
J Sports Med Phys Fitness. 2008 Jun;48(2):138-42
pubmed: 18427406
J Appl Physiol. 1966 Sep;21(5):1662-4
pubmed: 5923240
Front Physiol. 2019 Apr 10;10:352
pubmed: 31024332
Hum Mov Sci. 2019 Jun 13;66:487-496
pubmed: 31203018
J Sports Sci. 2017 Dec;35(24):2453-2460
pubmed: 28045340
J Appl Physiol (1985). 2019 Dec 1;127(6):1599-1610
pubmed: 31622158
Int J Sports Physiol Perform. 2011 Mar;6(1):8-24
pubmed: 21487146
J Strength Cond Res. 2009 Sep;23(6):1820-7
pubmed: 19675478
J Physiol. 2022 Jul;600(13):3069-3081
pubmed: 35593645
Sci Rep. 2017 Feb 13;7:42485
pubmed: 28211905
Eur J Appl Physiol. 2002 Aug;87(4-5):388-92
pubmed: 12172878
Eur J Appl Physiol. 2015 May;115(5):891-903
pubmed: 25481506
J Biomech. 1998 May;31(5):463-8
pubmed: 9727344
J Appl Physiol Respir Environ Exerc Physiol. 1979 Jan;46(1):79-83
pubmed: 457534
J Physiol. 1977 Jun;268(2):467--81
pubmed: 874922
Front Nutr. 2018 Sep 20;5:86
pubmed: 30294600
Exp Physiol. 2021 Sep;106(9):1897-1908
pubmed: 34197674
Int J Sports Med. 2010 Jul;31(7):477-81
pubmed: 20432195
Int J Sports Med. 2016 Aug;37(9):700-7
pubmed: 27176893
J Strength Cond Res. 2009 May;23(3):751-5
pubmed: 19387405
Scand J Med Sci Sports. 2016 Jun;26(6):648-58
pubmed: 25996964
Front Physiol. 2018 Dec 11;9:1789
pubmed: 30618802
Res Q Exerc Sport. 2012 Sep;83(3):367-75
pubmed: 22978185