Photocatalytic Hydrogen Production Activity and Mechanism of New Nickel-Based Sulfur Complexes in Aqueous Solution.
hydrogen production
mechanism exploration
nickel-based catalyst
photochemical properties
visible-light irradiation
Journal
Chemphyschem : a European journal of chemical physics and physical chemistry
ISSN: 1439-7641
Titre abrégé: Chemphyschem
Pays: Germany
ID NLM: 100954211
Informations de publication
Date de publication:
01 Jun 2023
01 Jun 2023
Historique:
revised:
06
03
2023
received:
13
01
2023
medline:
14
3
2023
pubmed:
14
3
2023
entrez:
13
3
2023
Statut:
ppublish
Résumé
The development of industry and the increase in population have caused energy shortages and environmental pollution problems. Developing clean and storable new energy is identified as a key way to solve the problems above. Hydrogen is viewed as the most potential energy carrier due to its high calorific value and pollution-free. To convert solar energy into hydrogen energy, three nickel-based catalysts, Ni(aps)(pys)
Identifiants
pubmed: 36912200
doi: 10.1002/cphc.202300033
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e202300033Subventions
Organisme : Natural Science Foundation of Anhui Province
ID : 1808085MB4
Organisme : Natural Science Foundation of Anhui University
ID : KJ2021B03
Organisme : Natural Science Foundation of State Key Laboratory of Inorgantic Synthesis and Preparative Chemistry
ID : 2023-15
Informations de copyright
© 2023 Wiley-VCH GmbH.
Références
D. G. Nocera, Acc. Chem. Res. 2017, 50, 616-619.
X. Wang, Q. Meng, L. Gao, Z. Jin, J. Ge, C. Liu, W. Xing, Int. J. Endocrinol. 2018, 43, 7055-7071.
N. Kornienko, J. Z. Zhang, K. K. Sakimoto, P. Yang, E. Reisner, Nat. Nanotechnol. 2018, 13, 890-899.
D. Kim, K. K. Sakimoto, D. Hong, P. Yang, Angew. Chem. Int. Ed. 2015, 54, 3259-3266;
Angew. Chem. 2015, 127, 3309-3316.
R. J. Detz, J. N. H. Reek, B. C. C. van der Zwaan, Energy Environ. Sci. 2018, 11, 1653-1669.
J. Yan, J. Liu, Y. Sun, D. Ding, C. Wang, L. Sun, X. Li, Inorg. Chem. Front. 2022, 9, 1423-1433.
A. K. Vijay, D. Meyerstein, V. Marks, Y. Albo, Inorg. Chem. Front. 2021, 8, 989-995.
J. A. Bard, M. A. Fox, Acc. Chem. Res. 1995, 28, 141-145.
A. J. Esswein, D. G. Nocera, Chem. Rev. 2007, 107, 4022-4047.
N. T. Suen, S. F. Hung, Q. Quan, N. Zhang, Y. J. Xu, H. M. Chen, Chem. Soc. Rev. 2017, 46, 337-365.
K. E. Dalle, J. Warnan, J. J. Leung, Chem. Rev. 2019, 119, 2752-2875.
V. Lyaskovskyy, B. D. Bruin, ACS Catal. 2012, 2, 270-279.
T. W. Eckenhoff, Coord. Chem. Rev. 2018, 373, 295-316.
P. W. Du, R. Eisenberg, Energy Environ. Sci. 2012, 5, 6012-6021.
L. Z. Fu, L. L. Zhou, L. Z. Tang, J. Power Sources 2015, 280, 453-458.
S. Chakraborty, E. H. Edwards, B. Kandemir, K. L. Bren, Inorg. Chem. 2019, 58, 16402-16410.
H. Rao, W. Q. Yu, H. Q. Zheng, J. Bonin, Y. T. Fan, H. W. Hou, J. Power Sources 2016, 324, 253-260.
H. Kasap, R. Godin, C. Jeay-Bizot, D. S. Achilleos, X. Fang, J. R. Durrantb, E. Reisner, ACS Catal. 2018, 8, 6914-6926.
S. H. Li, N. Zhang, X. Xie, L. Rafae, Y. J. Xu, Angew. Chem. Int. Ed. 2018, 57, 13082-13085;
Angew. Chem. 2018, 130, 13266-13269.
Z. Athanasios, K. Eugenia, S. Emmanouil, P. Vassilis, C. P. Raptopoulou, C. A. Mitsopoulou, Polyhedron. 2018, 152, 138-146.
T. M. Mccormick, Z. Han, D. J. Weinberg, W. W. Brennessel, P. L. Holland, R. Eisenberg, Inorg. Chem. 2011, 50, 10660-10666.
M. R. Dubois, D. L. Dubois, Acc. Chem. Res. 2009, 42, 1974-1982.
M. R. DuBois, D. L. DuBois, Chem. Soc. Rev. 2009, 38, 62-72.
W. Zhang, J. Hong, J. Zheng, Z. Huang, J. Zhou, R. Xu, J. Am. Chem. Soc. 2011, 133, 20680-20683.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, Inc., Wallingford CT 2019.
C. Dao, Z. J. Sun, D. P. Lu, P. W. Du, Dalton Trans. 2016, 45, 12897-12905.
S. E. Lee, A. Nasirian, Y. E. Kim, P. T. Fard, Y. Kim, B. Jeong, S. J. Kim, J. O. Baeg, J. Kim, J. Am. Chem. Soc. 2020, 142, 19142-19149.
J. X. Xu, Y. Yuan, S. Zou, O. Chen, D. A. Zhang, Anal. Chem. 2019, 91, 8540-8548.
S. G. Rosenfield, H. P. Berends, L. Gelmini, D. W. Stephan, P. K. Mascharak, Inorg. Chem. 1987, 26, 2792-2797.
S. A. A. R. Sayyed, N. I. Beedri, H. M. Pathan, J. Mater. Sci. 2016, 28, 5075-5081.
C. Lin, H. Wang, S. Liu, C. Li, B. Chu, Q. Yan, Sci. Semicond. Process. 2018, 73, 67-71.
X. Fu, J. Wang, D. Huang, S. Meng, Z. Zhang, L. Li, T. Miao, S. Chen, ACS Catal. 2016, 6, 957-968.
J. Dong, M. Wang, P. Zhang, S. Yang, J. Liu, X. Li, L. Sun, J. Phys. Chem. C. 2011, 115, 15089-15096.
Y. Pan, Y. You, S. Xin, Y. Li, G. Fu, Z. Cui, Y. Men, F. Cao, S. Yu, J. B. Goodengough . Am. Chem. 2017, 139, 4123-4129.
Q. Deng, T. Miao, Z. Wang, Y. Xu, X. Fu, Chem. Eng. J. 2019, 378, 122139.
T. Bai, X. Shi, M. Liu, H. Huang, M. Yu, J. Zhang, X. Bu, Dalton Trans. 2021, 50, 6064-6070.
H. Chen, Z. Sun, S. Du, S. Ye, D. Liu, P. Du, J. Mater. Chem. A. 2015, 3, 15729-15737.
H. H. Cui, J. Y. Wang, M. Q. Hu, C. B. Ma, H. M. Wen, X. W. Song, C. N. Chen, Dalton Trans. 2013, 42, 8684-8691.
W. Ping, G. Liang, M. R. Reddy, M. Long, K. Driskill, C. Lyons, B. Donnadieu, J. C. Bollinger, X. Zhang, J. Am. Chem. Soc. 2018, 140, 9219-9229.
B. Probst, C. Kolano, P. Hamm, R. Alberto, Inorg. Chem. 2009, 48, 1836-1843.
P. J. DeLaive, T. K. Foreman, C. Giannotti, D. G. Whitten, J. Am. Chem. Soc. 1980, 102, 5627-5631.
G. R. Fleming, A. W. E. Knight, J. M. Morris, R. J. S. Morrison, G. W. Robinson, J. Am. Chem. Soc. 1977, 99, 4306-4311.
Z. Han, L. Shen, W. W. Brennessel, J. Am. Chem. Soc. 2013, 135, 14659-14669.
X. P. Chen, S. Chen, C. F. Lin, Z. Jiang, W. F. Shangguan, Int. J. Hydrogen Energy 2015, 40, 998-1004.
H. Li, X. X. Liu, Y. S. Lin, B. Yang, Phys. Chem. Chem. Phys. 2015, 17, 11150-11155.
J. Wen, J. Xie, R. Shen, X. Li, X. Luo, H. Zhang, A. Zhang, G. Bi, Dalton Trans. 2017, 46, 1794-1802.
M. Zhang, X. J. Chen, X. Y. Jiang, J. Wang, L. Y. Xu, J. H. Qiu, W. R. Lu, D. L. Chen, Z. Q. Li, ACS Appl. Mater. Interfaces. 2021, 13, 14198-14206.
W. Cheng, L. Xue, J. Wang, X. X. Chen, H. Sun, C. P. Huang, Q. Wu, W. F. Yao, ACS Appl. Nano Mater. 2021, 4, 8390-8398.
E. Deponti, A. Luisa, M. Natali, E. Iengo, F. Scandola, Dalton Trans. 2014, 43, 16345-16353.
H. Rao, Z. Y. Wang, H. Q. Zheng, X. B. Wang, C. M. Pan, Y. T. Fan, H. W. Hou, Catal. Sci. Technol. 2015, 5, 2332-2339.
Z. J. Han, W. R. Mcnamara, M. S. Eum, P. L. Holland, R. Eisenberg, Angew. Chem. Int. Ed. 2012, 51, 1667-1670;
Angew. Chem. 2012, 124, 1699-1702.
H. Q. Feng, Y. Xi, Q. Z. Huang, Dalton Trans. 2020, 49, 12242-12248.
H. H. Cui, J. Y. Wang, M. Q. Hu, B. M. Cheng, H. M. Wen, X. W. Song, C. N. Chen, Dalton Trans. 2013, 42, 8684-8691.
Q. Deng, Y. Xu, Z. Wang, T. Miao, X. Fu, L. Xu, J. Phys. Chem. C. 2019, 123, 30351-30359.
E. Joliat-Wick, N. Weder, D. Klose, C. Bachmann, B. Spingler, B. Probst, R. Alberto, Inorg. Chem. 2018, 57, 1651-1655.
J. M. Yang, J. H. Qiu, Adv. Atoms. Sci. 1992, 9, 483-490.
L. Yuan, C. Han, M. Q. Yang, Y. J. Xu, Int. Rev. Phys. Chem. 2016, 35, 1-36.
Z. J. Han, L. X. Shen, W. W. Brennessel, P. L. Holland, R. Eisenberg, J. Am. Chem. Soc. 2013, 135, 14659-14669.
M. Watanabe, Sci. Technol. Adv. Mater. 2017, 18, 705-723.
V. Barone, M. Cossi, J. Phys. Chem. A. 1998, 102, 1995-2001.
M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comput. Chem. 2003, 24, 669-681.
S. C. Marinescu, J. R. Winkler, H. B. Gray, Proc. Natl. Acad. Sci. USA 2012, 109, 15127-15131.
Y. K. Jiang, J. H. Liu, Int. J. Quantum Chem. 2012, 112, 2541-2546.
M. Wang, B. Wang, F. Huang, Angew. Chem. Int. Ed. 2019, 58, 7526-7536;
Angew. Chem. 2019, 131, 7606-7616.
L. Vincze, F. Sandor, J. Pem, J. Photochem. Photobiol. 1999, 120, 11-14.
Y. Huang, B. Zhang, Angew. Chem. Int. Ed. Engl. 2017, 56, 14804-14806.
W. R. McNamara, Z. J. Han, P. J. Alperin, W. W. Brennessel, P. L. Holland, R. Eisenberg, J. Am. Chem. Soc. 2011, 133, 15368-15371.
L. Tan, Y. R. Li, Q. Lv, Y. Y. Gan, Y. Fang, Y. Tang, L. Z. Wu, Y. X. Fang, Catal. Today. 2023, 410, 282-288.