Photocatalytic Hydrogen Production Activity and Mechanism of New Nickel-Based Sulfur Complexes in Aqueous Solution.

hydrogen production mechanism exploration nickel-based catalyst photochemical properties visible-light irradiation

Journal

Chemphyschem : a European journal of chemical physics and physical chemistry
ISSN: 1439-7641
Titre abrégé: Chemphyschem
Pays: Germany
ID NLM: 100954211

Informations de publication

Date de publication:
01 Jun 2023
Historique:
revised: 06 03 2023
received: 13 01 2023
medline: 14 3 2023
pubmed: 14 3 2023
entrez: 13 3 2023
Statut: ppublish

Résumé

The development of industry and the increase in population have caused energy shortages and environmental pollution problems. Developing clean and storable new energy is identified as a key way to solve the problems above. Hydrogen is viewed as the most potential energy carrier due to its high calorific value and pollution-free. To convert solar energy into hydrogen energy, three nickel-based catalysts, Ni(aps)(pys)

Identifiants

pubmed: 36912200
doi: 10.1002/cphc.202300033
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e202300033

Subventions

Organisme : Natural Science Foundation of Anhui Province
ID : 1808085MB4
Organisme : Natural Science Foundation of Anhui University
ID : KJ2021B03
Organisme : Natural Science Foundation of State Key Laboratory of Inorgantic Synthesis and Preparative Chemistry
ID : 2023-15

Informations de copyright

© 2023 Wiley-VCH GmbH.

Références

D. G. Nocera, Acc. Chem. Res. 2017, 50, 616-619.
X. Wang, Q. Meng, L. Gao, Z. Jin, J. Ge, C. Liu, W. Xing, Int. J. Endocrinol. 2018, 43, 7055-7071.
N. Kornienko, J. Z. Zhang, K. K. Sakimoto, P. Yang, E. Reisner, Nat. Nanotechnol. 2018, 13, 890-899.
D. Kim, K. K. Sakimoto, D. Hong, P. Yang, Angew. Chem. Int. Ed. 2015, 54, 3259-3266;
Angew. Chem. 2015, 127, 3309-3316.
R. J. Detz, J. N. H. Reek, B. C. C. van der Zwaan, Energy Environ. Sci. 2018, 11, 1653-1669.
J. Yan, J. Liu, Y. Sun, D. Ding, C. Wang, L. Sun, X. Li, Inorg. Chem. Front. 2022, 9, 1423-1433.
A. K. Vijay, D. Meyerstein, V. Marks, Y. Albo, Inorg. Chem. Front. 2021, 8, 989-995.
J. A. Bard, M. A. Fox, Acc. Chem. Res. 1995, 28, 141-145.
A. J. Esswein, D. G. Nocera, Chem. Rev. 2007, 107, 4022-4047.
N. T. Suen, S. F. Hung, Q. Quan, N. Zhang, Y. J. Xu, H. M. Chen, Chem. Soc. Rev. 2017, 46, 337-365.
K. E. Dalle, J. Warnan, J. J. Leung, Chem. Rev. 2019, 119, 2752-2875.
V. Lyaskovskyy, B. D. Bruin, ACS Catal. 2012, 2, 270-279.
T. W. Eckenhoff, Coord. Chem. Rev. 2018, 373, 295-316.
P. W. Du, R. Eisenberg, Energy Environ. Sci. 2012, 5, 6012-6021.
L. Z. Fu, L. L. Zhou, L. Z. Tang, J. Power Sources 2015, 280, 453-458.
S. Chakraborty, E. H. Edwards, B. Kandemir, K. L. Bren, Inorg. Chem. 2019, 58, 16402-16410.
H. Rao, W. Q. Yu, H. Q. Zheng, J. Bonin, Y. T. Fan, H. W. Hou, J. Power Sources 2016, 324, 253-260.
H. Kasap, R. Godin, C. Jeay-Bizot, D. S. Achilleos, X. Fang, J. R. Durrantb, E. Reisner, ACS Catal. 2018, 8, 6914-6926.
S. H. Li, N. Zhang, X. Xie, L. Rafae, Y. J. Xu, Angew. Chem. Int. Ed. 2018, 57, 13082-13085;
Angew. Chem. 2018, 130, 13266-13269.
Z. Athanasios, K. Eugenia, S. Emmanouil, P. Vassilis, C. P. Raptopoulou, C. A. Mitsopoulou, Polyhedron. 2018, 152, 138-146.
T. M. Mccormick, Z. Han, D. J. Weinberg, W. W. Brennessel, P. L. Holland, R. Eisenberg, Inorg. Chem. 2011, 50, 10660-10666.
M. R. Dubois, D. L. Dubois, Acc. Chem. Res. 2009, 42, 1974-1982.
M. R. DuBois, D. L. DuBois, Chem. Soc. Rev. 2009, 38, 62-72.
W. Zhang, J. Hong, J. Zheng, Z. Huang, J. Zhou, R. Xu, J. Am. Chem. Soc. 2011, 133, 20680-20683.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, Inc., Wallingford CT 2019.
C. Dao, Z. J. Sun, D. P. Lu, P. W. Du, Dalton Trans. 2016, 45, 12897-12905.
S. E. Lee, A. Nasirian, Y. E. Kim, P. T. Fard, Y. Kim, B. Jeong, S. J. Kim, J. O. Baeg, J. Kim, J. Am. Chem. Soc. 2020, 142, 19142-19149.
J. X. Xu, Y. Yuan, S. Zou, O. Chen, D. A. Zhang, Anal. Chem. 2019, 91, 8540-8548.
S. G. Rosenfield, H. P. Berends, L. Gelmini, D. W. Stephan, P. K. Mascharak, Inorg. Chem. 1987, 26, 2792-2797.
S. A. A. R. Sayyed, N. I. Beedri, H. M. Pathan, J. Mater. Sci. 2016, 28, 5075-5081.
C. Lin, H. Wang, S. Liu, C. Li, B. Chu, Q. Yan, Sci. Semicond. Process. 2018, 73, 67-71.
X. Fu, J. Wang, D. Huang, S. Meng, Z. Zhang, L. Li, T. Miao, S. Chen, ACS Catal. 2016, 6, 957-968.
J. Dong, M. Wang, P. Zhang, S. Yang, J. Liu, X. Li, L. Sun, J. Phys. Chem. C. 2011, 115, 15089-15096.
Y. Pan, Y. You, S. Xin, Y. Li, G. Fu, Z. Cui, Y. Men, F. Cao, S. Yu, J. B. Goodengough . Am. Chem. 2017, 139, 4123-4129.
Q. Deng, T. Miao, Z. Wang, Y. Xu, X. Fu, Chem. Eng. J. 2019, 378, 122139.
T. Bai, X. Shi, M. Liu, H. Huang, M. Yu, J. Zhang, X. Bu, Dalton Trans. 2021, 50, 6064-6070.
H. Chen, Z. Sun, S. Du, S. Ye, D. Liu, P. Du, J. Mater. Chem. A. 2015, 3, 15729-15737.
H. H. Cui, J. Y. Wang, M. Q. Hu, C. B. Ma, H. M. Wen, X. W. Song, C. N. Chen, Dalton Trans. 2013, 42, 8684-8691.
W. Ping, G. Liang, M. R. Reddy, M. Long, K. Driskill, C. Lyons, B. Donnadieu, J. C. Bollinger, X. Zhang, J. Am. Chem. Soc. 2018, 140, 9219-9229.
B. Probst, C. Kolano, P. Hamm, R. Alberto, Inorg. Chem. 2009, 48, 1836-1843.
P. J. DeLaive, T. K. Foreman, C. Giannotti, D. G. Whitten, J. Am. Chem. Soc. 1980, 102, 5627-5631.
G. R. Fleming, A. W. E. Knight, J. M. Morris, R. J. S. Morrison, G. W. Robinson, J. Am. Chem. Soc. 1977, 99, 4306-4311.
Z. Han, L. Shen, W. W. Brennessel, J. Am. Chem. Soc. 2013, 135, 14659-14669.
X. P. Chen, S. Chen, C. F. Lin, Z. Jiang, W. F. Shangguan, Int. J. Hydrogen Energy 2015, 40, 998-1004.
H. Li, X. X. Liu, Y. S. Lin, B. Yang, Phys. Chem. Chem. Phys. 2015, 17, 11150-11155.
J. Wen, J. Xie, R. Shen, X. Li, X. Luo, H. Zhang, A. Zhang, G. Bi, Dalton Trans. 2017, 46, 1794-1802.
M. Zhang, X. J. Chen, X. Y. Jiang, J. Wang, L. Y. Xu, J. H. Qiu, W. R. Lu, D. L. Chen, Z. Q. Li, ACS Appl. Mater. Interfaces. 2021, 13, 14198-14206.
W. Cheng, L. Xue, J. Wang, X. X. Chen, H. Sun, C. P. Huang, Q. Wu, W. F. Yao, ACS Appl. Nano Mater. 2021, 4, 8390-8398.
E. Deponti, A. Luisa, M. Natali, E. Iengo, F. Scandola, Dalton Trans. 2014, 43, 16345-16353.
H. Rao, Z. Y. Wang, H. Q. Zheng, X. B. Wang, C. M. Pan, Y. T. Fan, H. W. Hou, Catal. Sci. Technol. 2015, 5, 2332-2339.
Z. J. Han, W. R. Mcnamara, M. S. Eum, P. L. Holland, R. Eisenberg, Angew. Chem. Int. Ed. 2012, 51, 1667-1670;
Angew. Chem. 2012, 124, 1699-1702.
H. Q. Feng, Y. Xi, Q. Z. Huang, Dalton Trans. 2020, 49, 12242-12248.
H. H. Cui, J. Y. Wang, M. Q. Hu, B. M. Cheng, H. M. Wen, X. W. Song, C. N. Chen, Dalton Trans. 2013, 42, 8684-8691.
Q. Deng, Y. Xu, Z. Wang, T. Miao, X. Fu, L. Xu, J. Phys. Chem. C. 2019, 123, 30351-30359.
E. Joliat-Wick, N. Weder, D. Klose, C. Bachmann, B. Spingler, B. Probst, R. Alberto, Inorg. Chem. 2018, 57, 1651-1655.
J. M. Yang, J. H. Qiu, Adv. Atoms. Sci. 1992, 9, 483-490.
L. Yuan, C. Han, M. Q. Yang, Y. J. Xu, Int. Rev. Phys. Chem. 2016, 35, 1-36.
Z. J. Han, L. X. Shen, W. W. Brennessel, P. L. Holland, R. Eisenberg, J. Am. Chem. Soc. 2013, 135, 14659-14669.
M. Watanabe, Sci. Technol. Adv. Mater. 2017, 18, 705-723.
V. Barone, M. Cossi, J. Phys. Chem. A. 1998, 102, 1995-2001.
M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comput. Chem. 2003, 24, 669-681.
S. C. Marinescu, J. R. Winkler, H. B. Gray, Proc. Natl. Acad. Sci. USA 2012, 109, 15127-15131.
Y. K. Jiang, J. H. Liu, Int. J. Quantum Chem. 2012, 112, 2541-2546.
M. Wang, B. Wang, F. Huang, Angew. Chem. Int. Ed. 2019, 58, 7526-7536;
Angew. Chem. 2019, 131, 7606-7616.
L. Vincze, F. Sandor, J. Pem, J. Photochem. Photobiol. 1999, 120, 11-14.
Y. Huang, B. Zhang, Angew. Chem. Int. Ed. Engl. 2017, 56, 14804-14806.
W. R. McNamara, Z. J. Han, P. J. Alperin, W. W. Brennessel, P. L. Holland, R. Eisenberg, J. Am. Chem. Soc. 2011, 133, 15368-15371.
L. Tan, Y. R. Li, Q. Lv, Y. Y. Gan, Y. Fang, Y. Tang, L. Z. Wu, Y. X. Fang, Catal. Today. 2023, 410, 282-288.

Auteurs

Haixia Shi (H)

School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, P. R. China.

Haisu Wu (H)

School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, P. R. China.

Ying Huang (Y)

School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, P. R. China.

Shuang Li (S)

School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, P. R. China.

Wanqi Lian (W)

School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, P. R. China.

Yun Xu (Y)

School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, P. R. China.

Tifang Miao (T)

School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, P. R. China.

Classifications MeSH