Impact of wavelength and spot size on laser depth of focus: Considerations for mass spectrometry imaging of non-flat samples.

depth of focus laser wavelength mass spectrometry imaging spatial resolution surface roughness

Journal

Journal of mass spectrometry : JMS
ISSN: 1096-9888
Titre abrégé: J Mass Spectrom
Pays: England
ID NLM: 9504818

Informations de publication

Date de publication:
May 2023
Historique:
revised: 09 02 2023
received: 04 01 2023
accepted: 19 02 2023
medline: 15 3 2023
pubmed: 15 3 2023
entrez: 14 3 2023
Statut: ppublish

Résumé

Biospecimens with nearly flat surfaces on a flat stage are typically required for laser-based mass spectrometry imaging (MSI) techniques. However, sampling stages are rarely perfectly level, and accounting for this and the need to accommodate non-flat samples requires a deeper understanding of the laser beam depth of focus. In ablation-based MSI methods, a laser is focused on top of the sample surface, ensuring that the sample is at the focal point or remains within depth of focus. In general, the depth of focus of a given laser is related to the beam quality (M

Identifiants

pubmed: 36916474
doi: 10.1002/jms.4914
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e4914

Subventions

Organisme : NIH HHS
ID : R01GM087964
Pays : United States

Informations de copyright

© 2023 The Authors. Journal of Mass Spectrometry published by John Wiley & Sons Ltd.

Références

Murray KK, Seneviratne CA, Ghorai S. High resolution laser mass spectrometry bioimaging. Methods. 2016;104:118-126. doi:10.1016/j.ymeth.2016.03.002
Bokhart MT, Muddiman DC. Infrared matrix-assisted laser desorption electrospray ionization mass spectrometry imaging analysis of biospecimens. Analyst. 2016;141(18):5236-5245. doi:10.1039/C6AN01189F
Nemes P, Vertes A. Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Anal Chem. 2007;79(21):8098-8106. doi:10.1021/ac071181r
Nisar MS, Zhao X. High resolution mass spectrometry for single cell analysis. Int J Mass Spectrom. 2020;450:116302. doi:10.1016/j.ijms.2020.116302
Feenstra AD, Dueñas ME, Lee YJ. Five micron high resolution MALDI mass spectrometry imaging with simple, interchangeable, multi-resolution optical system. J Am Soc Mass Spectrom. 2017;28(3):434-442. doi:10.1007/s13361-016-1577-8
Bartels B, Kulkarni P, Danz N, Böcker S, Saluz HP, Svatoš A. Mapping metabolites from rough terrain: laser ablation electrospray ionization on non-flat samples. RSC Adv. 2017;7(15):9045-9050. doi:10.1039/C6RA26854D
Kompauer M, Heiles S, Spengler B. Autofocusing MALDI mass spectrometry imaging of tissue sections and 3D chemical topography of non-flat surface. Nat Methods. 2017;14(12):1156-1158. doi:10.1038/nmeth.4433
Bokhart MT, Manni J, Garrard KP, Ekelöf M, Nazari M, Muddiman DC. IR-MALDESI mass spectrometry imaging at 50 micron spatial resolution. J Am Soc Mass Spectrom. 2017;28(10):2099-2107. doi:10.1007/s13361-017-1740-x
Bischoff C, Jäger E, Umhofer U, Lasagni AF, Völklein F. Homogenous intensity within the Rayleigh length and enhanced depth of focus for Gaussian beams. J Laser Micro/Nanoeng. 2020;15(3):178-185. doi:10.2961/jlmn.2020.03.2004
Luxon JT. Focusing and depth of focus of Gaussian and higher order mode beams. ICALEO. 1983;38:31-36. doi:10.2351/1.5057489
Luo X, Chen P, Wang Y. Power content M2-values smaller than one. Appl Phys B. 2010;98(1):181-185. doi:10.1007/s00340-009-3623-8
Eichler HJ, Eichler J, Lux O. Lasers: Basics, Advances, and Applications. Switzerland: Springer Nature; 2018:216-219. doi:10.1007/978-3-319-99895-4
Siegman AE. Lasers. Sausalito: University Science Books; 1986:675-679.
Bai H, Khodjaniyazova S, Garrard KP, Muddiman DC. Three-dimensional imaging with infrared matrix-assisted laser desorption electrospray ionization mass spectrometry. J Am Soc Mass Spectrom. 2020;31(2):292-297. doi:10.1021/jasms.9b00066
Montero R, Abad-García B, Garate J, Martín-Saiz L, Barceló-Coblijn G, Fernández JA. Improving spatial resolution of a LTQ Orbitrap MALDI source. J Am Soc Mass Spectrom. 2020;31(8):1755-1758. doi:10.1021/jasms.0c00133
Spraggins JM, Rizzo DG, Moore JL, Noto MJ, Skaar EP, Caprioli RM. Next-generation technologies for spatial proteomics: integrating ultra-high speed MALDI-TOF and high mass resolution MALDI FTICR imaging mass spectrometry for protein analysis. Proteomics. 2016;16(11-12):1678-1689. doi:10.1002/pmic.201600003
Harada T, Yuba-Kubo A, Sugiura Y, et al. Visualization of volatile substances in different organelles with an atmospheric-pressure mass microscope. Anal Chem. 2009;81(21):9153-9157. doi:10.1002/pmic.201600003
Keller C, Maeda J, Jayaraman D, et al. Comparison of vacuum MALDI and AP-MALDI platforms for the mass spectrometry imaging of metabolites involved in salt stress in Medicago truncatula. Front Plant Sci. 2018;9:1238. doi:10.3389/fpls.2018.01238
Kompauer M, Heiles S, Spengler B. Atmospheric pressure MALDI mass spectrometry imaging of tissues and cells at 1.4-μm lateral resolution. Nat Methods. 2017;14(1):90-96. doi:10.1038/nmeth.4071
Zavalin A, Todd EM, Rawhouser PD, Yang J, Norris JL, Caprioli RM. Direct imaging of single cells and tissue at sub-cellular spatial resolution using transmission geometry MALDI MS. J Mass Spectrom. 2012;47(11):i. doi:10.1002/jms.3132
Römpp A, Schäfer KC, Guenther S, et al. High-resolution atmospheric pressure infrared laser desorption/ionization mass spectrometry imaging of biological tissue. Anal Bioanal Chem. 2013;405(22):6959-6968. doi:10.1007/s00216-013-7180-y
Taylor MJ, Liyu A, Vertes A, Anderton CR. Ambient single-cell analysis and native tissue imaging using laser-ablation electrospray ionization mass spectrometry with increased spatial resolution. J Am Soc Mass Spectrom. 2021;32(9):2490-2494. doi:10.1021/jasms.1c00149
Shrestha B, Vertes A. In situ metabolic profiling of single cells by laser ablation electrospray ionization mass spectrometry. Anal Chem. 2009;81(20):8265-8271. doi:10.1021/ac901525g
Stopka SA, Khattar R, Agtuca BJ, et al. Metabolic noise and distinct subpopulations observed by single cell LAESI mass spectrometry of plant cells in situ. Front Plant Sci. 2018;9:1646. doi:10.3389/fpls.2018.01646

Auteurs

Alena N Joignant (AN)

FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA.

Ying Xi (Y)

FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA.

David C Muddiman (DC)

FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA.

Classifications MeSH